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Indexing is an essential step in analysis of diffraction patterns. Diffraction of

monochromatic radiation by a single crystal provides approximate positions of

some nodes of the reciprocal lattice of the crystal, and the indexing problem lies

in determining a lattice matching these positions. Ind_X is a program for

indexing diffraction data given in the form of several approximate reciprocal

lattice nodes. The applied method relies on testing potential volumes of the

primitive cell of the reciprocal lattice. A subset of reciprocal lattice vectors

supporting a given test volume is used to obtain tentative lattice bases. These are

bases of low-index superlattices of lattices based on triplets of supporting

vectors. The Ind_X solution of the indexing problem consists of a list of best

bases. The method turns out to be quite robust to data inaccuracies and spurious

reflections. The program is relatively versatile, easily operated and freely

accessible.

1. Introduction

The process of ascribing Miller indices to reflections on

diffraction patterns is referred to as indexing. Indexing

appears in most diffraction-based crystallographic studies. In

particular, it is an important element of structure determina-

tion by single-crystal diffraction of monochromatic X-rays. In

this case, recorded data can be converted to vectors approx-

imating the crystal reciprocal lattice, and the indexing is

reduced to determination of the true lattice from several

approximate positions of lattice nodes.

It must be noted at the outset that indexing of accurate

reciprocal lattice vectors is straightforward. Complications

arise when the diffraction data are inaccurate. Consistent and

reliable indexing of error-affected input or cases with multiple

lattices contributing to a pattern can be difficult. Robustness

of indexing procedures to both random errors in locations of

diffraction peaks and gross errors (inaccurate instrument

settings, spurious reflections) is crucial for correctness of

results.

Most indexing programs are just intrinsic parts of structure-

determination packages (e.g. Pflugrath, 1999; Otwinowski &

Minor, 2001; Leslie et al., 2002; Kabsch, 2010), but also a

number of standalone indexing tools have been reported (e.g.

Klein, 1975; Duisenberg, 1992; Pilz et al., 2002; Sauter et al.,

2004). Ind_X is a program for indexing diffraction data given

in the form of reciprocal lattice nodes. It was written to extend

the capabilities of a software package for analysis of Kossel

diffraction patterns (Morawiec, 2016). The intended applica-

tion was lattice parameter determination, and it concerned

relatively simple crystal structures. However, additional tests

on simulated diffraction data showed that the program is also

applicable to more complicated indexing problems. Ind_X can
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be compared to DirAx (Duisenberg, 1992), which is consid-

ered to be most suitable for solving difficult cases. Our tests

indicate that Ind_X has a similar effectiveness in this regard.

For illustration, see the supporting information with solutions

for the example data of Duisenberg (1992).

Each indexing program has specific built-in mechanisms for

controlling the extent of search for solutions. In some cases,

the choice of the control parameters and criteria is essential

for getting the right result, and it is important to have diverse

instruments for solving such patterns. Ind_X adds to the

diversity of available indexing tools. Since the program is

compact and easily operated, it can be conveniently used for

solving small-cell problems. An important feature of Ind_X is

the simplicity of the applied method.

2. Method

Numerous indexing schemes have been considered in the past

(see e.g. Jacobson, 1976; Vriend & Rossmann, 1987; Kabsch,

1988; Kim, 1989; Higashi, 1990; Duisenberg, 1992; Steller et al.,

1997; Jacobson, 1997; Campbell, 1998; Powell, 1999; Gildea et

al., 2014). The procedure implemented in Ind_X relies on the

volume of the primitive cell of the reciprocal lattice. The initial

test volumes can be either automatically determined by the

program or provided by the user.

The first approach (automatic determination) is based on

period-detection methods. In the error-free case, the volume

of the primitive cell would be a submultiple of volumes of

parallelepipeds spanned by reciprocal lattice vectors, i.e. the

latter volumes would be distributed periodically. In practice,

the volumes of such parallelepipeds are affected by experi-

mental errors, and the volume distributions show some peri-

odicities but are not exactly periodic. The point is to find the

period of the distribution obtained from experimental reci-

procal lattice vectors. The volumes calculated by Ind_X from

triplets of experimental vectors constitute a data series, and to

get the period the program uses a periodogram – the primary

tool for identification of periodicities in data series (Anderson,

1971). In the considered case, the periodogram can be seen as

the frequency of occurrence of particular periods among

volumes of parallelepipeds spanned by triplets of the experi-

mental reciprocal lattice vectors. For accurate diffraction data,

such periodograms have simple structures, and it is easy to

determine the period. For many experimental data sets,

however, periodograms tend to be noisy (Fig. 1). Therefore,

Ind_X extracts a number of test volumes corresponding to the

highest peaks of a given periodogram.

Alternatively, the test volumes can be indicated by the user

based on visual inspection of a periodogram. If the period-

ogram is noisy, one may provide a list of (up to 350) properly

distributed volumes. On the other hand, the list may contain a

single volume if, after getting an indexing solution, one

decides to check whether there are any twin-related solutions;

the latter correspond to the same volume as the initial solu-

tion, so the check is done by running Ind_X for this particular

test volume. The test volumes do not need to be accurate as

the initial set of test volumes is extended by volumes in the

vicinity of those in the initial set; this applies to both user-

provided and automatically determined volumes.

For each test volume, the program selects a subset of reci-

procal lattice vectors supporting it. Roughly, a vector supports

a test volume if it is comprised in numerous triplets spanning

parallelepipeds with volumes close to integer multiples of the

test volume. The program estimates the quality of support by

an individual vector by checking all triplets in which the vector

is comprised. The larger the number of parallelepipeds with
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Figure 1
Example Lomb–Scargle periodograms in arbitrary units versus volume in
direct space (Å3). Plots are shown in ranges which one may select on the
basis of the type of crystal or the density of reflections. Discs mark
volumes of parallelepipeds spanned on primitive bases of best lattices. (a)
Periodogram obtained from 16 vectors corresponding to conics in a
Kossel diffraction pattern of the martensite phase of Cu–Al–Be alloy
(Bouscaud et al., 2014). The smallest primitive cell volume allowing for
indexing of the pattern was about 3.7 � 101 Å3. (b) Periodogram for 30
reflections from a simulated diffraction data set of a crystal with a cell of
medium size, 4.0 � 103 Å3. (c) Periodogram based on 26 reflections from
‘Example 2’ of Duisenberg (1992), representing a small protein with a cell
volume of about 2.3 � 105 Å3.
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volumes close to integer multiples of the test volume, the

larger the support.1 The vectors are then ranked, and the best

vectors constitute the needed subset. The reasons for using the

subset of supporting vectors are twofold: first, the subsequent

confinement to this subset eliminates potential spurious

reflections, and second, it speeds up the program.

The supporting vectors are used to construct tentative

solutions. Briefly, the tentative bases of the reciprocal lattice

are bases of low-index superlattices of the lattices based on

triplets of the supporting vectors. The scheme is illustrated two

dimensionally in Fig. 2. A triplet of legitimate vectors [like the

vectors in Fig. 2(a)] determines a certain lattice (Fig. 2b).

Trivial but crucial for what follows is the observation that this

lattice is a sublattice of the actual reciprocal lattice of the

crystal [Fig. 2(b) shows a sublattice of the lattices shown in

Fig. 2(c)]. Thus the indexing problem is reduced to checking

all bases of small-index superlattices of the lattice based on the

triplet. [This corresponds to checking the bases shown in

Fig. 2(d).] For details on generation of superlattices in the

three-dimensional space see, for example, Santoro & Mighell

(1973) and Billiet & Coz (1980). Since the number of super-

lattices grows fast with the index,2 the program checks the

bases of superlattices up to index 3 in the quickest case, up to 7

by default and up to 16 in the most extensive calculations. The

construction of the solutions also includes two standard steps:

fitting integer combinations of basis vectors to the supporting

vectors (Kim, 1989) and Buerger reduction of the basis

(Buerger, 1957, 1960). Having a tentative basis, indexing of all

experimental reflections is attempted. The result of the

attempt is used to quantify the quality of the basis. The bases

of highest quality are saved. The number of saved bases is

controlled by the user (but it cannot exceed 128). These steps

are repeated for all tentative bases constructed from a given

triplet of supporting vectors, for all triplets of vectors

supporting a given test volume and for all test volumes.

As for the important parameter representing the quality of

a basis, a number of different quantities have been tested to

find a balance between effectiveness, simplicity and flexibility.

The implemented approach is based on a user-controlled limit

on the allowed deviation of Miller indices from integers. With

the number of reflections within this limit denoted by Nh and

the number of reflections within half of the limit denoted by

NH , the quality of the basis is proportional to wHNH þ whNh,

where wH and wh are user-controlled weights.

Ind_X can only process data sets containing a relatively

small number of reflections N because the number of reflec-

tion triplets grows with N as N3, and this has an impact on the

execution time. Typically, N is expected to be about 20–50.

With a small number of reflections and suitably chosen

Ind_X parameters (see below), the execution time can be a

fraction of a second. However, one must be aware that speed

comes at a price of quality. For higher reliability of results, one

can perform an extended search, and this can be a lengthy

process.

3. Software and hardware environment

Ind_X is written in Fortran 90. It can be run from a command

prompt in a console window on personal computers under

computer programs
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Figure 2
Schematic two-dimensional illustration of the construction of tentative
bases from the two ‘experimental’ reciprocal lattice vectors drawn in (a).
The lattice based on the two vectors is represented by discs in (b). Its
three superlattices (discs + circles) of index 2 are shown in (c). The three
bases of the superlattices are used as tentative bases (d).

1 In other words, if the test volume corresponds to a peak in the periodogram,
the support is large if the vector contributed numerous times (i.e. as a member
of numerous triplets) to the peak.
2 For example, for the indices 3, 5, 7, 10 and 16, the number of superlattices is
13, 31, 57, 217 and 651, respectively (cf. Santoro & Mighell, 1973).
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Microsoft Windows operating systems. The program uses a

single input file with keywords followed by appropriate data.

The file must contain a set of reflections specified by Cartesian

coordinates of reciprocal lattice vectors. There are also a

number of optional input parameters, like the above-

mentioned limit on the allowed deviation of a Miller index

from an integer or the largest allowed absolute value of Miller

indices. Besides the number of reflections, three optional

parameters have an impact on the execution time. These are

(1) limits on the allowed volume of the primitive cell, (2) an

upper limit on the number of supporting reflections and (3) a

single entity controlling (through a number of secondary

parameters) the extent of the search for the solution. In

particular, the latter entity determines the density of argu-

ments of the periodogram, the number of automatically

detected test volumes and the upper limit on the index of

inspected superlattices.

A typical output file contains a list of proposed solutions.

The choice of the ultimate solution from the list is left to the

user. For each solution, one gets a matrix of basis vectors of

the direct lattice.3 Then, there is a table of Miller indices

corresponding to particular reflections, the parameters a, b, c,

�, � and �, and the volume of the primitive cell. The program

delivers the Buerger-reduced cell, and additional processing is

needed to obtain the lattice symmetry. The task can be

performed using LEPAGE (Spek, 1988) or other procedures

of this kind (see e.g. Clegg, 1981; Le Page, 1982; Zimmermann

& Burzlaff, 1985; Higgins et al., 1990; Macı́ček & Yordanov,

1992).

4. Availability

A 0.22 MB compressed file with the executable Ind X:exe for

Windows can be downloaded from http://imim.pl/personal/

adam.morawiec/. Program documentation is limited to PDF-

formatted instructions. Alternatively, one can download a

0.52 MB package which, besides Ind X:exe, contains a .NET-

based graphical user interface written by M. F. Morawiec. The

interface facilitates changes of Ind_X parameters and analysis

of periodograms.
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Supplementary material

(to ’Ind X : program for indexing single crystal diffraction patterns’ by A. Morawiec)

Tables below show high quality solutions (parts of output files) obtained by running Ind X

for data of Duisenberg (1992). In response to a recommendation by an anonymous reviewer,

also results for unpublished ”examples 6 and 7” are listed. In all cases, the limit on the

allowed deviation of Miller indices from integers was the Ind X default of 0.12; reflections

within this limit are denoted by -h and reflections within half of the limit are denoted by

H-. The unit of length is Ångström, and angles are in degrees.



Example 1:

Solution nr 2 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

-0.41624538 0.04542523 5.05672819

-2.24425594 -7.88469324 -0.11196100

-11.93485938 1.08178703 -0.99071084

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | 2 0 -8 | 2.01 0.00 -8.03 | 0.032

2 H- | 2 -5 -7 | 2.00 -5.00 -6.96 | 0.037

3 | | 1.97 -0.01 -9.20 | 0.205

4

5 H- | 1 -1 -7 | 0.99 -1.00 -6.94 | 0.058

6

7 H- | 1 0 -7 | 1.00 0.00 -7.03 | 0.032

8 H- | 1 -2 -7 | 1.00 -2.00 -7.00 | 0.004

9 -h | 2 -3 3 | 1.93 -3.00 2.93 | 0.093

10 H- | 3 -4 0 | 3.01 -4.00 0.04 | 0.039

11 H- | 1 -4 1 | 1.01 -4.00 0.95 | 0.055

12 H- | 1 -4 0 | 0.99 -4.00 0.04 | 0.044

13 -h | 1 -4 0 | 1.01 -4.00 -0.07 | 0.074

14 H- | 2 -1 4 | 2.01 -1.00 4.02 | 0.026

15 | | 1.93 0.00 4.22 | 0.232

16 H- | 2 -3 -2 | 2.01 -3.00 -1.98 | 0.025

17 H- | 3 1 6 | 3.02 1.00 5.99 | 0.021

18 -h | 2 0 8 | 2.01 0.01 8.07 | 0.073

19

20 H- | 1 1 6 | 1.00 1.00 6.00 | 0.004

21 H- | 1 4 -1 | 0.98 4.01 -0.99 | 0.026

22 | | 1.97 1.99 2.22 | 0.226

23 H- | 2 1 1 | 1.99 0.99 0.94 | 0.061

24 H- | 3 2 1 | 3.00 2.00 0.99 | 0.011

25 | | 3.04 1.99 -2.16 | 0.166

--------------------------------------------------------

18h and 15H vectors out of 25. Quality : 0.684

Primitive cell :

5.074 8.199 12.025

79.26 89.99 89.99

Volume of the cell : 491.47



Example 2:

Solution nr 1 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

22.39827411 23.67373447 19.86433441

-55.72013365 53.74568735 2.85453230

27.36701652 32.99645419 -66.67913680

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 -h | 0 4 7 | -0.02 3.92 6.89 | 0.134

2 H- | 3 15 11 | 3.01 15.01 10.99 | 0.017

3 H- | 4 24 14 | 4.01 24.03 14.01 | 0.031

4 -h | 1 6 7 | 0.99 5.94 6.91 | 0.105

5 H- | 6 15 0 | 6.00 14.95 -0.04 | 0.059

6 -h | 5 22 10 | 4.99 22.05 10.09 | 0.100

7 H- | 4 27 15 | 4.01 27.00 14.97 | 0.037

8 -h | 7 26 5 | 7.00 26.05 5.07 | 0.090

9 -h | 9 27 -6 | 9.00 26.91 -6.10 | 0.131

10 -h | 6 29 10 | 6.01 29.11 10.03 | 0.116

11 -h | 5 24 11 | 4.99 24.03 11.08 | 0.090

12 -h | 1 26 21 | 0.98 25.90 20.92 | 0.126

13 -h | 6 13 -3 | 6.01 12.98 -3.08 | 0.079

14 H- | 4 15 8 | 4.00 15.02 8.03 | 0.030

15 -h | 3 5 -2 | 3.00 4.98 -2.06 | 0.066

16 H- | 4 7 -3 | 4.00 6.99 -3.05 | 0.054

17 H- | 4 8 -1 | 4.00 8.00 -1.02 | 0.020

18 H- | 7 23 3 | 7.00 22.98 3.03 | 0.040

19 H- | 6 10 -11 | 5.98 9.96 -11.02 | 0.051

20 H- | 5 13 2 | 5.00 12.98 1.99 | 0.021

21 H- | 6 20 5 | 6.00 20.00 5.05 | 0.049

22 -h | 2 26 19 | 2.00 25.93 18.93 | 0.101

23 H- | 8 28 1 | 8.01 28.01 1.02 | 0.023

24 -h | 8 30 2 | 8.00 30.09 2.08 | 0.118

25 H- | 3 13 9 | 3.00 13.00 9.01 | 0.008

26 H- | 7 16 -5 | 7.00 15.95 -5.05 | 0.074

--------------------------------------------------------

26h and 14H vectors out of 26. Quality : 0.862

Primitive cell :

38.167 77.469 79.271

89.46 88.68 88.43

Volume of the cell : 234225.58



Example 3, solution a:

Solution nr 1 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

-0.08757438 2.89242892 -3.33163710

18.02074562 -1.42129210 1.17612284

-3.89689517 -16.76216719 -11.52746836

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | 1 3 -7 | 1.00 3.02 -6.99 | 0.023

2 H- | 1 -3 -4 | 1.00 -2.99 -4.00 | 0.008

3 H- | 0 5 -5 | 0.00 5.00 -5.00 | 0.004

4 H- | 1 -3 -8 | 1.00 -3.00 -8.00 | 0.007

5 H- | 0 0 -8 | 0.00 0.00 -8.00 | 0.003

6 H- | 0 -5 -7 | 0.00 -5.00 -7.00 | 0.003

7 H- | 0 -5 -3 | 0.00 -5.00 -3.00 | 0.005

8 H- | 0 0 -12 | 0.00 0.00 -11.99 | 0.006

9 H- | -1 4 -6 | -1.00 4.02 -6.00 | 0.016

10 H- | -1 -6 -8 | -1.00 -5.99 -8.00 | 0.012

11 H- | -1 -7 -6 | -1.00 -7.01 -6.00 | 0.012

12 H- | 0 0 -12 | 0.00 -0.01 -12.01 | 0.016

13 H- | 0 5 -13 | 0.00 5.00 -13.00 | 0.007

14 H- | 1 2 -13 | 1.00 2.00 -13.00 | 0.003

15 H- | 1 0 -13 | 1.00 -0.04 -13.01 | 0.036

16 H- | 1 -3 -12 | 1.00 -3.00 -11.99 | 0.005

17 H- | 1 1 -11 | 1.00 0.98 -11.01 | 0.019

18 H- | -1 3 -8 | -1.00 3.00 -8.00 | 0.007

19 H- | -1 4 -10 | -1.00 4.01 -9.99 | 0.014

20 H- | 0 10 -10 | 0.00 10.00 -10.00 | 0.003

21 H- | 1 -7 -9 | 1.00 -6.98 -9.00 | 0.023

22 H- | 1 3 -11 | 1.00 3.02 -11.00 | 0.025

23 H- | 1 -3 -8 | 1.00 -3.00 -8.00 | 0.003

24 H- | 1 2 -9 | 1.00 2.01 -9.00 | 0.006

25 H- | 1 1 -7 | 1.00 0.98 -7.00 | 0.016

--------------------------------------------------------

25h and 25H vectors out of 25. Quality : 1.000

Primitive cell :

4.413 18.115 20.713

99.20 96.11 96.90

Volume of the cell : 1609.27



Example 4:

Solution nr 1 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

1.20056709 1.71918935 -10.94962184

-0.92071771 -22.25549176 -3.59537022

97.65751543 -5.77590232 9.77179118

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | 0 -3 -21 | 0.00 -3.02 -21.06 | 0.059

2 H- | 0 -3 -24 | 0.00 -3.01 -23.99 | 0.011

3 | | 0.00 -3.04 -22.14 | 0.143

4 H- | 0 -3 -23 | 0.00 -3.00 -22.98 | 0.023

5 H- | 0 -5 -16 | 0.00 -5.00 -15.99 | 0.009

6 H- | 0 -4 -26 | 0.00 -4.00 -25.95 | 0.050

7 H- | 0 -1 -29 | 0.00 -1.01 -28.97 | 0.031

8 -h | 0 -1 -31 | -0.01 -0.89 -31.03 | 0.112

9 H- | 0 0 -22 | 0.00 -0.01 -21.97 | 0.035

10 H- | -1 -4 18 | -1.00 -3.99 17.98 | 0.022

11 H- | -1 -4 17 | -1.00 -3.99 16.99 | 0.014

12 H- | -1 -5 11 | -1.00 -4.99 11.00 | 0.007

13 H- | -1 -5 10 | -1.00 -5.01 10.02 | 0.025

14 H- | -2 1 -19 | -2.00 1.00 -18.97 | 0.025

15 H- | -2 0 -21 | -2.00 0.00 -20.99 | 0.010

16 H- | -2 1 -23 | -2.00 1.00 -22.96 | 0.037

17 H- | -2 0 -23 | -2.00 0.00 -22.98 | 0.020

18 H- | -1 -3 27 | -1.00 -2.99 27.00 | 0.015

19 H- | 2 -2 19 | 2.00 -2.00 19.00 | 0.004

20 H- | 2 -3 16 | 2.00 -3.00 16.01 | 0.011

21 H- | 2 -4 11 | 2.00 -4.00 11.05 | 0.047

22 H- | 2 -3 17 | 2.00 -3.00 17.01 | 0.013

23 H- | 2 -4 9 | 2.00 -4.00 9.01 | 0.010

24 H- | 2 -5 0 | 2.00 -5.01 0.01 | 0.014

25 H- | 2 -4 15 | 2.00 -3.99 15.00 | 0.007

--------------------------------------------------------

24h and 23H vectors out of 25. Quality : 0.948

Primitive cell :

11.149 22.563 98.315

89.91 89.98 90.00

Volume of the cell : 24730.50



The diffraction data of Example 3 were known to originate from an incommensurate struc-

ture. According to (Duisenberg 1992), a ”supercell” fitting all reflections has the ”volume

3942.00 = 49× 80.44”. The quite accurate Ind X solution (a) shown above gives a smaller

volume (1609.27 ≈ 20×80.46). If 100 is the upper limit on the cell volume, Ind X gives the

solution (b) with the volume of 80.43; see below. The relationship between the two solutions

is Ma ≈ T×Mb, where Ma and Mb are the matrices of direct lattice vectors (in rows) for

each of the solutions, and

T =

 1 −1 0

−3 −2 0

0 1 4

 ;

Miller indices of the solution (a) can be obtained by multiplying T and the column of indices

of the solution (b). The smallest-volume solution accepting all reflections with the default

Ind X parameters is listed below as (c).



Example 3, solution b:

Solution nr 1 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

-3.63857749 1.44382309 -1.57287407

-3.55149346 -1.44846389 1.75859322

-0.08637420 -3.83006631 -3.31877056

| h k l | Real (hkl) | Error

--------------------------------------------------------

1

2 H- | 1 0 -1 | 1.00 0.00 -1.00 | 0.001

3 H- | -1 -1 -1 | -1.00 -1.00 -1.00 | 0.001

4 H- | 1 0 -2 | 1.00 0.00 -2.00 | 0.001

5 H- | 0 0 -2 | 0.00 0.00 -2.00 | 0.001

6 H- | 1 1 -2 | 1.00 1.00 -2.00 | 0.001

7 H- | 1 1 -1 | 1.00 1.00 -1.00 | 0.002

8 H- | 0 0 -3 | 0.00 0.00 -3.00 | 0.002

9

10

11 H- | 1 2 -2 | 1.00 2.00 -2.00 | 0.001

12 H- | 0 0 -3 | 0.00 0.00 -3.00 | 0.003

13 H- | -1 -1 -3 | -1.00 -1.00 -3.00 | 0.001

14 H- | 0 -1 -3 | 0.00 -1.00 -3.00 | 0.000

15

16 H- | 1 0 -3 | 1.00 0.00 -3.00 | 0.001

17

18 H- | -1 0 -2 | -1.00 0.00 -2.00 | 0.001

19

20 H- | -2 -2 -2 | -2.00 -2.00 -2.00 | 0.001

21

22

23 H- | 1 0 -2 | 1.00 0.00 -2.00 | 0.001

24 H- | 0 -1 -2 | 0.00 -1.00 -2.00 | 0.000

25

--------------------------------------------------------

16h and 16H vectors out of 25. Quality : 0.640

Primitive cell :

4.219 4.219 5.069

89.95 89.99 63.06

Volume of the cell : 80.43



Example 3, solution c:

Solution nr 9 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

0.08764924 -2.89243836 3.33158017

-7.09574696 3.84139431 3.45898860

10.99137244 12.92062820 8.06968392

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | -1 0 7 | -1.00 0.05 6.94 | 0.076

2 H- | -1 2 2 | -1.00 2.00 2.00 | 0.007

3 H- | 0 -1 6 | 0.00 -1.00 6.00 | 0.003

4 H- | -1 3 5 | -1.00 3.00 4.99 | 0.005

5 H- | 0 2 6 | 0.00 1.99 6.01 | 0.010

6 H- | 0 4 3 | 0.00 3.99 3.01 | 0.016

7 H- | 0 3 0 | 0.00 2.99 0.01 | 0.010

8 H- | 0 3 9 | 0.00 2.99 9.01 | 0.015

9 H- | 1 0 6 | 1.00 0.02 5.97 | 0.037

10 H- | 1 5 3 | 1.00 5.02 2.98 | 0.025

11 H- | 1 5 1 | 1.00 4.98 1.02 | 0.032

12 H- | 0 3 9 | 0.00 2.99 9.02 | 0.019

13 H- | 0 1 12 | 0.00 0.99 12.01 | 0.013

14 H- | -1 2 11 | -1.00 2.00 11.00 | 0.003

15 -h | -1 3 10 | -1.00 2.92 10.09 | 0.121

16 H- | -1 4 8 | -1.00 4.00 8.00 | 0.003

17 H- | -1 2 9 | -1.00 1.96 9.04 | 0.057

18 H- | 1 1 7 | 1.00 0.98 7.02 | 0.028

19 H- | 1 1 9 | 1.00 1.02 8.97 | 0.036

20 H- | 0 -2 12 | 0.00 -2.00 12.00 | 0.003

21 H- | -1 5 4 | -1.00 5.04 3.96 | 0.058

22 H- | -1 1 10 | -1.00 1.04 9.96 | 0.062

23 H- | -1 3 5 | -1.00 3.00 5.00 | 0.004

24 H- | -1 1 8 | -1.00 1.00 7.99 | 0.008

25 H- | -1 1 6 | -1.00 0.97 6.04 | 0.049

--------------------------------------------------------

25h and 24H vectors out of 25. Quality : 0.988

Primitive cell :

4.413 8.779 18.785

90.15 96.60 90.31

Volume of the cell : 722.90



Examples 6 and 7 are described at http://www.crystal.chem.uu.nl/distr/dirax/examples.html

as ”inaccurate data” and ”not very accurate data”, respectively. DirAx solutions to these

examples are available at the same web page. The first solution given by Ind X to example

6 is similar to that given by DirAx ; in both cases, one reflection is not indexed. Example

7 is fully indexable (solution no 1). However, solutions 2 and 3 of Ind X indicate that

the data originate from a twinned crystal. Only solutions similar to 1 and 2 are listed at

http://www.crystal.chem.uu.nl/distr/dirax/examples.html and, in consequence, the possibility

of twinning is overlooked.



Example 6:

Solution nr 1 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

-0.22772791 0.41128973 3.87525272

-0.28186242 -5.94601285 1.00932446

16.69620088 -2.75388915 1.71750269

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | 2 0 10 | 2.00 0.00 10.00 | 0.007

2 H- | 2 2 9 | 2.00 2.00 9.01 | 0.011

3 H- | 1 -1 13 | 1.00 -1.01 13.00 | 0.007

4 H- | 0 2 6 | -0.03 2.00 5.98 | 0.033

5 H- | 0 3 4 | -0.03 3.00 3.96 | 0.049

6 H- | 0 1 9 | -0.02 1.00 9.01 | 0.022

7 H- | 1 1 5 | 0.99 1.00 4.98 | 0.021

8 H- | 1 0 5 | 0.99 0.01 5.00 | 0.016

9 H- | 2 -2 -2 | 2.02 -2.00 -2.02 | 0.028

10

11 H- | 1 -2 2 | 0.99 -2.00 2.01 | 0.012

12 H- | 0 -2 -6 | -0.02 -2.00 -6.00 | 0.022

13 H- | 0 -1 -3 | -0.02 -1.01 -2.99 | 0.026

14 H- | 1 -1 -1 | 1.01 -1.00 -1.01 | 0.013

15 H- | 0 -3 5 | -0.01 -3.00 5.02 | 0.022

16 H- | 0 -3 -4 | -0.02 -3.00 -3.99 | 0.020

17 H- | 2 1 -7 | 2.00 1.00 -7.00 | 0.005

18 H- | 1 4 -1 | 0.98 4.00 -0.99 | 0.019

19 H- | 2 3 -2 | 2.00 3.00 -1.99 | 0.013

20 H- | 1 5 4 | 0.98 5.00 4.05 | 0.052

21 -h | 1 4 -4 | 0.99 4.01 -4.12 | 0.120

22 H- | 1 0 -8 | 0.99 0.00 -8.00 | 0.012

23 -h | 1 2 -5 | 0.98 2.01 -5.12 | 0.117

24 H- | 1 4 -7 | 0.98 4.02 -6.97 | 0.041

25 H- | 0 -1 -6 | -0.03 -1.01 -6.02 | 0.035

--------------------------------------------------------

24h and 22H vectors out of 25. Quality : 0.936

Primitive cell :

3.904 6.038 17.009

82.50 88.51 86.28

Volume of the cell : 396.55



Example 7:

Solution nr 1 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

1.84344954 3.25703922 8.82866263

22.22374211 1.60108683 -5.22574341

16.66747588 -35.84753215 9.80100707

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | 4 10 24 | 4.01 9.99 23.98 | 0.024

2 H- | 6 12 16 | 6.00 12.00 16.02 | 0.018

3 H- | 4 12 22 | 4.01 11.99 21.97 | 0.034

4 H- | 4 8 20 | 4.00 8.00 19.99 | 0.015

5 H- | 6 7 1 | 6.00 7.02 1.04 | 0.049

6 H- | 7 10 6 | 6.99 10.02 6.00 | 0.021

7 H- | 5 15 15 | 5.00 14.99 14.98 | 0.017

8 H- | 5 15 16 | 4.99 14.99 15.96 | 0.041

9 H- | 4 -14 -16 | 4.00 -14.00 -16.03 | 0.033

10 H- | 5 -11 -17 | 5.00 -11.00 -17.01 | 0.014

11 H- | 5 -13 -21 | 5.00 -13.00 -21.02 | 0.023

12 H- | 7 4 -14 | 7.00 4.00 -14.00 | 0.005

13 H- | 6 2 -12 | 6.01 2.00 -11.97 | 0.029

14 H- | 4 -13 -9 | 4.00 -13.00 -9.06 | 0.055

15 H- | 5 -9 -14 | 5.00 -9.00 -13.96 | 0.041

16 H- | 7 -4 -18 | 7.00 -4.01 -17.96 | 0.044

17 H- | 2 -4 30 | 2.00 -4.00 30.02 | 0.020

18 H- | 2 -5 29 | 2.00 -5.00 29.03 | 0.027

19 H- | 2 -16 8 | 1.99 -16.01 8.00 | 0.010

20 H- | 2 -16 10 | 1.99 -16.00 9.96 | 0.038

21 H- | 1 -10 20 | 1.00 -9.99 19.99 | 0.013

22 H- | 1 -12 16 | 1.00 -11.99 16.03 | 0.034

23 H- | 2 -17 -5 | 2.01 -17.01 -5.04 | 0.039

24 H- | 1 -13 8 | 1.00 -13.00 8.06 | 0.058

25 H- | 1 -12 10 | 1.00 -11.99 10.01 | 0.012

--------------------------------------------------------

25h and 25H vectors out of 25. Quality : 1.000

Primitive cell :

9.589 22.886 40.730

73.69 89.93 89.99

Volume of the cell : 8578.63



Example 7:

Solution nr 2 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

-1.84244579 -3.25710729 -8.82838295

-2.78455888 -18.72373301 7.51579641

22.22271405 1.60042838 -5.22626771

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | -4 7 10 | -4.01 6.99 9.99 | 0.015

2 H- | -6 2 12 | -5.99 2.01 12.00 | 0.010

3 H- | -4 5 12 | -4.01 4.98 11.99 | 0.019

4 H- | -4 6 8 | -4.00 5.99 8.00 | 0.012

5 H- | -6 -3 7 | -6.00 -2.99 7.02 | 0.022

6 H- | -7 -2 10 | -6.99 -2.01 10.02 | 0.024

7 H- | -5 0 15 | -5.00 -0.01 14.99 | 0.011

8

9 H- | -4 -1 -14 | -4.00 -1.01 -13.99 | 0.015

10 H- | -5 -3 -11 | -5.00 -3.00 -11.00 | 0.003

11 H- | -5 -4 -13 | -5.00 -4.00 -13.00 | 0.006

12 H- | -7 -9 4 | -7.00 -9.00 4.00 | 0.003

13 H- | -6 -7 2 | -6.01 -6.99 2.00 | 0.014

14 H- | -4 2 -13 | -4.00 1.98 -13.00 | 0.023

15

16 H- | -7 -7 -4 | -7.00 -6.97 -4.01 | 0.030

17 H- | -2 17 -4 | -2.00 17.01 -4.00 | 0.013

18 H- | -2 17 -5 | -2.00 17.02 -5.00 | 0.018

19 H- | -2 12 -16 | -2.00 12.01 -16.01 | 0.012

20 H- | -2 13 -16 | -1.99 12.99 -16.00 | 0.015

21 H- | -1 15 -10 | -1.00 14.99 -9.99 | 0.012

22 H- | -1 14 -12 | -1.00 14.01 -11.99 | 0.019

23 H- | -2 6 -17 | -2.01 5.99 -17.01 | 0.015

24

25 H- | -1 11 -12 | -1.00 11.00 -11.99 | 0.009

--------------------------------------------------------

22h and 22H vectors out of 25. Quality : 0.880

Primitive cell :

9.589 20.367 22.885

106.34 90.00 90.07

Volume of the cell : 4288.81



Example 7:

Solution nr 3 out of 16.

Direct basis vectors (in rows) = inverse of UB matrix;

transforms RL vectors to Miller indices :

1.84235217 3.25747591 8.82920015

8.34452110 -17.93160379 4.89513606

22.22639387 1.60217130 -5.22661136

| h k l | Real (hkl) | Error

--------------------------------------------------------

1 H- | 4 12 10 | 4.01 12.00 9.99 | 0.012

2 H- | 6 8 12 | 6.00 8.01 12.00 | 0.014

3 H- | 4 11 12 | 4.01 10.99 11.99 | 0.014

4 H- | 4 10 8 | 4.00 10.00 8.00 | 0.006

5

6 H- | 7 3 10 | 6.99 3.00 10.02 | 0.022

7

8 H- | 5 8 15 | 4.99 7.99 15.00 | 0.016

9 H- | 4 -8 -14 | 4.00 -8.03 -14.00 | 0.028

10

11

12 H- | 7 -7 4 | 7.00 -7.00 4.00 | 0.003

13 H- | 6 -6 2 | 6.01 -5.99 2.00 | 0.012

14

15 H- | 5 -7 -9 | 5.00 -6.99 -9.00 | 0.012

16 H- | 7 -9 -4 | 7.00 -8.99 -4.01 | 0.016

17 H- | 2 15 -4 | 2.00 15.01 -4.01 | 0.014

18

19 H- | 2 4 -16 | 2.00 3.99 -16.01 | 0.013

20 H- | 2 5 -16 | 1.99 4.98 -16.00 | 0.026

21 H- | 1 10 -10 | 1.00 9.99 -9.99 | 0.010

22 H- | 1 8 -12 | 1.00 8.01 -11.99 | 0.018

23

24 H- | 1 4 -13 | 1.00 4.02 -13.00 | 0.025

25 H- | 1 5 -12 | 1.00 5.00 -12.00 | 0.005

--------------------------------------------------------

18h and 18H vectors out of 25. Quality : 0.720

Primitive cell :

9.590 20.375 22.889

73.67 89.99 89.95

Volume of the cell : 4291.67



Output of LePage.exe for solution no. 3 of example 7 (cf. solution no 2):

LAT0 LATT A B C ALFA BET GAM VOL

-------------------------------------------------------------------------------

INPUT CELL P 9.590 20.375 22.889 73.67 89.99 89.95 4292.00

REDUC CELL P 9.590 20.375 22.889 73.67 89.99 89.95 4292.00

CONV. CELL M P 20.375 9.590 22.889 90.01 106.33 89.95 4292.00

-------------------------------------------------------------------------------


