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Abstract

X-ray based measurement of residual lattice strains at chosen penetration depth is one of

the methods for investigating strain inhomogeneities in near-surface layers of polycrystalline

materials. The measurement relies on determining shifts of Bragg peaks for various direc-

tions of the scattering vector with respect to the specimen. At each of these directions, to

reach a given the penetration depth, a proper specimen orientation is required. The task of

determining such orientations, albeit elementary, is quite intricate. The existing literature

describes only partial solutions with unspecified domains of application, which fail if applied

to beyond the domains. Therefore, geometric aspects of the measurement are analyzed in

details. Explicit bounds on measurement parameters are given. The equation fundamental

for the procedure is solved with respect to specimen orientations. For a given direction of

the scattering vector, there are generally four different specimen orientations leading to the

same penetration depth. This simple fact (overlooked in previous analyzes) can be used

for improving reliability of measurement results. Analytical formulas for goniometer angles

representing these orientations are provided.
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1. Introduction

Residual strains in polycrystalline materials are frequently measured using X-ray diffraction

by recording shifts of Bragg diffraction peaks at various tilts of the specimen with respect to

the X-ray beam [1]. Results of these measurements are affected by strain inhomogeneities.

To investigate strain gradients along the normal to the specimen surface, methods accounting

for X-ray penetration depth have been devised; for a review, see [2] and references therein.

There is a large and growing interest in such methods due to the importance of materials

with steep stress gradients, especially surface treated materials and polycrystalline coatings,

e.g., [3–6]. As the penetration depth varies with the specimen tilt, special measurement

geometries are used; the most basic techniques of this kind referred to as ”χ mode” and

”ω mode”1 rely on simple relationships between the penetration depth and the tilt angles.

An alternative approach is to measure strain at constant penetration depth, in the so-

called ”combined ω/χ mode” [2, 9, 10]. To perform such a measurement at a given Bragg

angle, the remaining angles of a diffractometer need to be varied in a proper manner so the

penetration depth remains unchanged. Therefore full understanding of the geometry of the

measurement is required, and the technical issue of setting proper goniometer angles are of

fundamental importance. Formulas for the angles of the standard four-circle diffractometer,

a detailed strategy of the measurement, and descriptions of the method were published

in [9–12]. However, the descriptions of the measurement geometry given in these article have

deficiencies: they are incomplete with unspecified domains of application, and thus incorrect

if applied beyond these domains. This paper completes these descriptions and presents a

broader perspective on geometric aspects of the ”combined ω/χ mode”. It provides explicit

bounds on measurement parameters and a full solution of the fundamental equation of the

method with respect to specimen orientations. For a given direction of the scattering vector,

up to four different specimen orientations lead to the same penetration depth. Knowing these

orientations will be useful for confirming measurement data (by comparing peak positions

from different configurations), or generally, for getting more reliable results. The possibility

of measuring lattice strains at the same penetration depth in four specimen orientations

has not been recognized before. These four orientations are characterized. In particular,

analytical formulas for all goniometer angles for each of these orientations are given. Results

concerning the bounds and solutions of the fundamental equation are general, but those

concerning instrumental angles depend on the type of diffractometer and the choice of

the reference systems; if other settings are used, the general scheme will be the same but

particular formulas will differ. For an easy comparison, we follow Kumar et al. [10] in

respect of instrumental angles, reference systems, nomenclature and most of notation. It

is assumed that measurements are carried out using a perfectly aligned diffractometer and

a particular reflection with a fixed Bragg angle (i.e., the search for the peak position is

ignored). Angles are considered modulo 2π unless explicit bounds are given, and angle units

are radians except in figures where angles are in degrees.

1Or Ψ and Ω modes [7] or ”side-inclination” and ”iso-inclination” methods [8], respectively.
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2. Penetration depth

Intensity of X-rays passing through a distance p in a material decreases from the initial I0 to

I0 exp(−µp), where µ is the linear attenuation coefficient. If a measured material property,

say strain ϵ, varies along the distance z from the specimen surface, the recorded value ϵrec

is a weighted average of ϵ(z)

ϵrec =
1

N

∫ ∞

0
ϵ(z) exp(−µp) dz , (1)

where N =
∫∞
0 exp(−µp) dz, and p depends on the measurement geometry, in particular

on the distance z; see, e.g., [13, 14]. Diffraction geometry is governed by the Laue equation

kkk − kkk0 = hhh, where hhh is a vector of the reciprocal crystal lattice, kkk0 and kkk denote wave

vectors of the incident and diffracted beams, and the wave vectors are of equal magnitudes

|kkk0 |= 1/λ =|kkk |. The Laue equation can be written as κκκ + κκκ0 = λhhh, where κκκ = λkkk and

κκκ0 = −λkkk0 are unit vectors. With the point of diffraction at 000, the lines along the beams

have parametric equations xxx = l0κκκ0 and xxx = lκκκ, respectively; see Fig. 1. The equation of Fig.1

the specimen surface is nnn · xxx = z, where nnn denotes the unit vector normal to the surface.

Hence, the intersections of the lines and the surface correspond to parameters l0 and l

given by l0nnn · κκκ0 = z and lnnn · κκκ = z, and the path of the beams in the material equals

p = l0 + l = z
(
(nnn · κκκ0)−1 + (nnn · κκκ)−1

)
. Thus, the weighting distribution N−1 exp(−µp) in

eq.(1) can be expressed as τ−1 exp(−z/τ), where the effective penetration depth τ is linked

to geometric parameters κκκ0, κκκ and nnn via

1

µτ
=

1

nnn · κκκ0
+

1

nnn · κκκ
. (2)

Equation (2) is fundamental for the description of the strain measurement at a given pene-

tration depth. Since nnn ·κκκ0 = sinα0 and nnn ·κκκ = sinα, where α0 and α are the angles between

the specimen surface and the incident and diffracted beams, it is usually written in the form

(µτ)−1 = cscα0 + cscα; cf. [2].

Three remarks concerning the fundamental equation (2) are in place. First, it implies

that τ must satisfy the condition

2µτ < 1 ;

surprisingly, this basic inequality is ignored in literature. Second, relationships which follow

from eq.(2) involve µ and τ only in the product µτ . In other words, measurement geometry

is influenced by τ only via µτ , and the penetration depth will appear below only in this

form. Third, for given κκκ0 and κκκ, solutions to eq.(2) must be symmetric with respect to the

exchange of these vectors. The experimental configurations related by this exchange will be

referred to as coupled configurations.

The central problem addressed in this paper can be formulated as follows: given a value

of µτ and a direction of the scattering vector hhh with respect to the specimen, what are

the specimen orientations for which the fundamental equation is satisfied, and what are the

goniometer angles corresponding to these orientations. To approach the problem, one needs

to specify reference systems and bounds on geometric parameters used for describing it. The
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analysis begins with getting relations between Cartesian components of nnn in a laboratory

reference system. They lead to explicit bounds on accessibility of the polar angle of nnn in

this system. Subsequently, the link between the components in the laboratory and specimen

reference systems is given, and formulas for the goniometer angles are derived.

3. Surface normal in laboratory coordinate system and accessibility bounds

Let the orthonormal laboratory reference system be defined by the basis vectors

eee1 =
κκκ0 − κκκ

|κκκ0 − κκκ|
, eee2 =

κκκ× κκκ0
|κκκ× κκκ0|

, eee3 =
κκκ0 + κκκ

|κκκ0 + κκκ|
.

Vectors eee1 and eee3 are in the scattering plane, and eee3 is along the scattering vector hhh; see

Fig. 2. The vector nnn normal to the specimen surface can be expressed in the laboratory Fig.2

coordinate system as

nnn =
ν−√
t−

eee1 + n2 eee2 +
ν+√
t+

eee3 ,

where t+ = |κκκ0+κκκ|2 /4 and t− = |κκκ−κκκ0|2 /4 = 1− t+. The indices are ’−’ and ’+’ to accent

the link of respective parameters to κκκ0 − κκκ and κκκ0 + κκκ. With such nnn, its scalar products

with κκκ0 and κκκ take simple forms

nnn · κκκ0 = ν+ + ν− and nnn · κκκ = ν+ − ν− . (3)

This means that the configuration is symmetric, in the sense that κκκ0 and κκκ are at the same

angle to the specimen surface, only if ν− = 0. Substitution of nnn ·κκκ0 and nnn ·κκκ in eq.(2) leads

to

ν2− = ν+(ν+ − 2µτ) , (4)

and the normalization condition nnn ·nnn = 1 gives an expression for squared n2

n22 = 1− ν+
ν+ − 2µτ t+

t+t−
. (5)

Thus, for given diffraction geometry (κκκ0 and κκκ) and a given µτ , the squared ν− and n2 are

determined by the parameter ν+. Besides ν+, only the signs of ν− and n2 remain indefinite.

Accessibility bounds

Since both the incident and diffracted beams must be properly directed with respect to

specimen surface, the values of nnn ·κκκ0, nnn ·κκκ and nnn ·eee3 must be larger than zero. The condition

nnn · eee3 > 0 implies that ν+ must be positive. The inequalities nnn ·κκκ0 > 0 and nnn ·κκκ > 0 do not

increase constrains on ν+ because, based on eqs.(3), they give |ν−| < ν+ which is contained

in eq.(4),2 and the tightest bounds on the free parameter ν+ follow from the conditions

0 ≤ ν2− and 0 ≤ n22 . (6)

2This noteworthy fact has simple interpretation: the requirement of physically sensible penetration depth

implies that both beams have attainable directions. Jumping ahead, this means that for arbitrary Bragg

angles and for all penetration depths reachable with these Bragg angles, paths of κκκ0 and κκκ in Fig. 4a are

confined to the upper hemisphere.
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Using eqs. (4) and (5), one gets

2µτ ≤ ν+ ≤ µτt+ +
√

(µτt+)2 + t−t+ . (7)

If ν+ is at the left bound, then ν− = 0, i.e., this bound is reached at the aforementioned

symmetric configuration (similar to the experimental ”χ mode”). At the right bound, one

has n2 = 0 and the extreme asymmetric configuration (as in the ”ω mode”). The upper

bound is larger than the lower bound only if

2µτ <
√
t+ ; (8)

this is the basic requirement for performing a measurement at a given penetration depth.

Its violation means that the considered depth cannot be reached.

Bounds on polar angle ψ

The above conditions can be expressed via standardly used angles. With θ = arcsin(λ |hhh| /2)
denoting the Bragg angle (0 < θ < π/2), one has κκκ0 = sin θ eee3 + cos θ eee1 and κκκ = sin θ eee3 −
cos θ eee1, and hence

t+ = sin2 θ and t− = cos2 θ .

The requirement (8) implies that 2µτ must be smaller than the sine of the Bragg angle

2µτ < sin θ . (9)

Let ψ (0 ≤ ψ < π/2) and φ denote, respectively, the polar and the azimuth angles of eee3 in

the Cartesian specimen coordinate system based on unit vectors sss1, sss2 and sss3 = nnn. By the

definition of ψ, one has cosψ = nnn · eee3 = ν+/
√
t+. Hence,

ν+ = sin θ cosψ , (10)

i.e., the parameter ν+ is independent of µτ , and – for a given Bragg angle – it is directly

linked to the polar angle ψ. Substitution of (10) to inequalities (7) gives bounds on admis-

sible values of ψ

cosψmax = 2µτ csc θ ≤ cosψ ≤
(
µτ +

√
(µτ)2 + cot2 θ

)
sin θ = cosψmin . (11)

When θ approaches π/2, both lower and upper bound on cosψ approach 2µτ . On the

other hand, if sin θ approaches 2µτ , both bounds on ψ approach 0.3 Example bounds are

presented in Fig. 3. Ranges of admissible ψ were also pictured in [10] and [15] for fixed Fig.3

Bragg angles, but these for fixed µτ shown here are more symmetric and in effect more

transparent.

To get reliable results, strain measurements need to be carried out for a wide scope of

parameters. The optimal Bragg angle leading to the largest accessibility ranges are given in

3Corresponding θ- and µτ -dependent bounds on ψ were described by Benediktovitch et al. [15]. The

upper bound ψmax agrees with their result, but the lower bounds are different; one can verify by direct

calculation that eq.(13) of [15] for the lower bound is not correct.
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Appendix A. Practical aspects of the considered measurement are out of the scope of this

paper, but one point directly linked to the measurement geometry needs to be mentioned.

In principle, all vectors nnn with components within the limits (7) are accessible. In practice,

in the case of small µτ , to avoid refraction and surface roughness effects, and to take into

account limited accuracy of instruments, one may request the angles α0 and α to be larger

than a certain limiting value αmin. The smallest α0 and α arise when ψ = ψmin, i.e., in

the highly asymmetric case. If αmin is small (say, slightly exceeds the critical angle of total

external reflection), and the Bragg angle is near the optimal values (21) or (22), then to

have α0 and α larger than αmin, the parameter µτ must be larger than sinαmin ≈ αmin.

4. Specimen orientations

As was already indicated, the crucial question one faces when working in the ”combined

ω/χ mode” concerns the specimen orientations in the laboratory reference frame which

would lead to a given direction (ψ,φ) of the scattering vector and the desired penetration

depth. The special orthogonal matrix, say O, representing the specimen orientation in the

laboratory reference frame is built of the direction cosines Oij = sssi · eeej , and thus can be

written in the form

eee1 eee2 eee3

sss1 · · sinψ cosφ

sss2 · · sinψ sinφ

nnn = sss3 ν−/
√
t− n2 ν+/

√
t+ (= cosψ)

. (12)

Knowing the third column and the last row of O, based on the orthogonality condition

O−1 = OT and detO = +1, one can determine the remaining entries, and the result is

unique in almost all cases. Taking into account that ν+ determines the magnitudes of ν−

and n2 but not their signs, there are in general four4 distinct configurations with the same ν+,

i.e., with the same orientation of the scattering vector with respect to the specimen. If one

of them has parameters (ν−, n2, ν+), the other correspond to (−ν−,−n2, ν+), (−ν−, n2, ν+)
and (ν−,−n2, ν+). If one of these solutions is attainable, so are the other three.

The four types of configurations can be pictured in the mind by considering specimen

rotations about the scattering vector hhh ∥ eee3. The polar angle of nnn in the laboratory coordi-

nate system with the polar axis along eee3 is ψ. With η denoting the azimuth angle of nnn in

the same system, one has

ν−/
√
t− = sinψ cos η and n2 = sinψ sin η . (13)

To keep the penetration depth constant with the change of ψ, the specimen must also rotate

about the scattering vector. One can easily verify that with ψ varying from ψmin to ψmax,

the angle η changes by π/2. At ψ = ψmin (the highest asymmetry, n2 = 0), η equals 0

or π, and it equals π/2 or 3π/2 at ψ = ψmax (symmetric case, ν− = 0). For ψ satisfying

ψmin < ψ < ψmax, there are four different values of η leading to the same ν2− and n22. With

4Solutions overlap when ν− = 0 or n2 = 0, but their properties in these instances follow from the general

case, and therefore, they will not be discussed separately.
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one of these values being η, the other three are π − η, π + η and 2π − η. In the standard

measurement strategy with variable ψ and constant φ, all possible configurations can be

covered by continuous change of η from 0 to 2π and the full range of ψ traversed four times.

This is illustrated in Fig. 4. All four stages (numbered 1 to 4) of the complete cycle of η Fig.4

are shown in both sample and laboratory reference frames.

Two orientations linked by the simultaneous change of the signs of both ν− and n2

are related by half-turns about eee3 and by the exchange of κκκ0 and κκκ, i.e., they correspond

to coupled configurations. Clearly, there are two pairs of coupled configurations. Since

sinα0 = nnn · κκκ0 = ν+ + ν− is independent of n2, among the four types of solutions only two

different incidence angles α0 are possible, and an analogous statement applies to the exit

angle α.

5. Goniometer angles

To perform a measurement at a given penetration depth, one needs to link the parameters

ψ, φ and µτ to angles of a goniometer. For a detailed description of the angles ω, χ

and ϕ of a laboratory four-circle diffractometer the reader is referred to, e.g., [2, 10]. For

simplicity, we use Ω = ω − θ instead of ω. Below, the directions of rotations by goniometer

angles are selected to match the sign convention used by Kumar et al. [10]. The rotations

are schematically illustrated in Fig. 2. With prime and double-prime symbols indicating

rotated axes, the orientation of the specimen is determined by composition of the rotation by

Ω about eee2, the rotation by χ about eee′1, and the rotation by ϕ about −eee′′3.5 The composition

is represented by the matrix · · − sinϕ sinχ cosΩ− cosϕ sinΩ

· · cosϕ sinχ cosΩ− sinϕ sinΩ

cosχ sinΩ − sinχ cosχ cosΩ

 ; (14)

see Appendix B. The goniometer angles are obtained by comparing entries of the matrices

(12) and (14). At first, to keep formulas reasonably simple, they are listed hierarchically,

i.e., preceding equations are needed to calculate a given instrumental angle. Since |χ| < π/2,

the single expression

sinχ = −n2 (15)

determines the angle χ. Similarly, since |Ω | < π/2, the angle Ω is given by the second of

the relationships

(cosΩ , sinΩ) =
1√

1− n22

(
ν+√
t+
,
ν−√
t−

)
. (16)

The first one is listed because it can be used for calculating ϕ. The comparison of the entries

13 and 23 of the above matrices leads to

( cos(ϕ− φ), sin(ϕ− φ) ) = − (sinΩ , cosΩ sinχ) cscψ , (17)

5The last rotation has the axis direction opposite to eee′′3 in order to have the same monotonicity of ϕ as

that of φ; the angle φ is a magnitude of active rotation of the vector eee3 about nnn = sss3 = eee′′3 , whereas ϕ is the

angle of passive rotation of reference frame about its third axis eee′′3 .
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where χ and Ω are given by eqs. (15) and (16), respectively; since the range of ϕ is 2π, both

parts of (17) are needed to get the right angle. Using eqs.(15–17) and eqs.(4,5,10) for the

components of nnn, one can get the instrumental angles Ω, χ and ϕ explicitly expressed via

ψ, φ and µτ .

Clearly, the signs of n2 and ν− determine the signs of the angles χ and Ω, respec-

tively. Given a configuration described by (Ω, χ, ϕ), the coupled configuration corresponds

to the angles (−Ω,−χ, ϕ+ π), and the other two configurations with the same ψ and φ are

(Ω,−χ, 2φ − ϕ) and (−Ω, χ, 2φ − ϕ + π). Since cosψ = cosχ cosΩ, one has cosψ ≤ cosχ

and cosψ ≤ cosΩ, and in consequence |χ| ≤ ψ and |Ω| ≤ ψ. The last inequality is weaker

than the actual bound on |Ω |; it can be shown that |Ω | ≤ ψmin. For constant φ and the

polar angle ψ growing from ψmin to ψmax, the angle |Ω| decreases from ψmin to 0, |χ| grows
from 0 to ψmax, and ϕ alters by π/2. Example changes of Ω, χ and ϕ needed to cover all

configurations in the case with varying ψ and constant φ are shown in Fig. 5. Worth noting Fig.5

is the continuity of the changes.

Relationships involving the angle η

The parameter µτ appears naturally in the description of measurements with controlled pen-

etration depth. However, since a given triplet (ψ,φ, µτ) corresponds to multiple specimen

orientations, it is convenient to replace µτ by η, as specimen orientations are unambigu-

ously determined by (ψ, η, φ). Based on eqs. (15–17) and (13), it is easy to link (ψ, η, φ) to

(Ω, χ, ϕ). With ψ, |Ω| and |χ| in the range from 0 to π/2, the goniometer angles are given

by

Ω = arctan (tanψ cos η)

χ = − arcsin (sinψ sin η)

ϕ = φ+ atan2 (− cos η , cosψ sin η) ,

(18)

and the inverse relationships are

ψ = arccos (cosχ cosΩ)

η = atan2 (sinΩ cosχ,− sinχ)

φ = ϕ+ atan2 (− sinΩ , cosΩ sinχ) ;

(19)

cf. [12]. Eqs. (19) fail if Ω = 0 = χ, i.e., if ψ = 0; this is consistent with the fact that φ and

η are undefined at ψ = 0. The parameter µτ can be calculated from (ψ, η, φ) or (Ω, χ, ϕ)

using

µτ =
ν2+ − ν2−
2ν+

=
sin2 θ − sin2 ψ + cos2 θ sin2 ψ sin2 η

2 sin θ cosψ
=

cosχ (cos2Ω− cos2 θ)

2 sin θ cosΩ
. (20)

The formula expressing µτ via (ψ, η, φ) is a basis of the so-called ”scattering vector method”

of z–resolved strain determination [16].

Other accounts on instrumental angles

How does the above formalism relate to previously published formulas? Using the expres-

sions listed above, all instrumental angles, including Ω, can be calculated directly from the

measurement parameters µτ , ψ and φ. In [10], there is no explicit formula for ω = θ + Ω,
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and this angle is calculated by numerically solving a variant of eq.(20). The same approach

was used in [17]. It has been even claimed that this equation is not explicitly solvable with

respect to ω [11]; eq.(16) proves this assertion to be false.

Then there is the issue of the instrumental angle ϕ. Eq.(17) implies that tan(ϕ −
φ) = sinχ cotΩ. To calculate ϕ, Kumar et al. [10] use the related formula ϕ = φ +

arctan (sinχ cotΩ), which gives only angles ϕ differing from φ by less than π/2, and it fails

to give solutions for which |ϕ − φ | exceeds π/2. This difficulty is caused by inadequate

specification of domains of particular angles. A related issue concerns the first of relation-

ships (19): it is sometimes written simply as cosψ = cosχ cosΩ [10, 11, 17], but sometimes

– to avoid an inconsistency referred to in [12] as ”a ’flip-flop’ phenomenon” – the angle ψ

is modified by factor sgn(Ω) [2,12]. There are no such inconsistencies in the formulas listed

above.

Finally, eqs. (19) and (20) are similar to corresponding formulas of Francois [12]. The

two sets of relationships linking (ψ, η, φ) to (Ω, χ, ϕ) and vice versa in [12] are mutually

inverse, on one hand, only if his η is in the range from 0 to π/2, and on the other, only if Ω

and χ have the same signs. Eqs. (19) and (20) are mutually inverse for all experimentally

attainable angles.

6. Final remarks

X-ray based measurement of residual strain at chosen penetration depth requires flawless

control of all angles of a four-circle diffractometer. This paper addressed a number of

issues essential for understanding the geometry of this technique. In particular, accessibility

bounds for used angles were given, and a complete solution of the fundamental equation was

presented. In general, there are four different specimen orientations for a given penetration

depth and a given direction (ψ,φ) of a scattering vector, and accordingly, there are four

sets of instrumental angles leading to these orientations. Analytical formulas for all these

angles were provided. Detailed understanding of the measurement geometry can be used

for devising better measurement strategies.

Parts of the presented formalism are applicable to other depth-resolved strain determi-

nation methods. Clearly, the formalism is directly linked to measurements in the ”ω mode”,

”χ mode” and to the ”scattering vector method” of Genzel [16]. The presented formulas

can be a basis of general measurement strategies, with strains recorded for a large number

of specimen orientations and various penetration depths, and with special attention paid to

economy of movements of an Eulerian cradle. For simplicity, only the case of compact (bulk)

solids with constant attenuation coefficient µ was considered, but a number of observations

contained in this paper can be used in the more complicated problem of layered materials,

with z-dependent µ. Finally, some results are also relevant for the geometrically similar

technique of determining near-surface crystallographic textures [18–20].
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Appendix A: The largest accessibility range and the optimal Bragg angle

One is free to choose an arbitrary value of φ. As for ψ, two ways of increasing the scope

of the parameters are natural: one may want to have (a) a broad range of ψ, or (b) a

large domain of accessible nnn vectors. The first case is relevant in the standard measurement

strategy with variable ψ and constant φ (as in the conventional sin2 ψ method), whereas

the second one is of importance when the measurement is based on numerous arbitrarily

distributed specimen tilts [21,22].

(a) Fig. 6a shows the largest possible ψmax − ψmin and the optimal Bragg angle θ at Fig.6

which this range is attained versus µτ . The curves were computed numerically, but they

are reasonably well approximated by

θ ≈ θa = arcsin (2µτ)1/2 (21)

and the corresponding difference ψmax − ψmin derived from eq.(11) for θ = θa.

(b) The µτ -dependence of the largest fraction cosψmin−cosψmax of the hemisphere covered

by accessible nnn vectors and the Bragg angle at which this fraction is attained are shown in

Fig. 6b. The exact formulas for these curves are relatively complicated, but they can be

approximated by

θ ≈ θb = arcsin (2µτ)1/3 (22)

and the difference cosψmin − cosψmax for θ = θb.

The functions in Figs. 6a and 6b are similar but the differences in optimal Bragg angles

for the modes (a) and (b) are not negligible; cf. caption of Fig. 3. It is also worth noting

that the interpretation of expressions (21) and (22) can be inverted: a given reflection

with its Bragg angle θ is most suitable for investigating the material at the depth given by

2µτ ≈ sinm θ, where m = 2 in the case (a) and m = 3 in the case (b).

Appendix B

A passive rotation of a Cartesian reference frame by an angle ξ about the axis along a unit

vector having components [l1 l2 l3]
T is represented by a matrix with the entries δij cos ξ +

lilj(1−cos ξ)+
∑

k εijk lk sin ξ, (i, j = 1, 2, 3); see, e.g., [23]. With Rk(ξ) denoting the matrix

of a rotation about the k-th axis of the Cartesian coordinate system (k = x, y, z), the matrix

(14) is equal to the product Rz(−ϕ) Rx(χ) Ry(Ω), or explicitly cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 1 0 0

0 cosχ sinχ

0 − sinχ cosχ


 cosΩ 0 − sinΩ

0 1 0

sinΩ 0 cosΩ

 .

Similarly, the matrix (12) can be expressed as

Rz(3π/2− φ) Rx(−ψ) Rz(η − π/2) .

Thus, eqs. (18–19) linking the triplets (ψ, η, φ) and (Ω, χ, ϕ) can simply be seen as relation-

ships between two different conventions for Euler angles: the classic ’z-x-z ’ and the unusual

’z-x-y ’, respectively.
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Figure 1: Schematic illustration of entities used for derivation of eq.(2). For the meaning of

symbols, see the text.
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Figure 2: Positions of the laboratory and sample reference systems with respect to the

diffraction plane and the beams at ϕ = 0◦ and the adopted directions of goniometer rotations.

Vector nnn is perpendicular to the specimen surface, and eee3 is along the scattering vector.
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Figure 3: Example accessibility ranges of the angle ψ. Te largest of shown regions corre-

sponds to µτ = 0.1. In this case, arcsin(2µτ) = 11.5◦ and arccos(2µτ) = 90◦−11.5◦ = 78.5◦.

The largest range (43.5◦) of ψ is reached at θ = 26.1◦, whereas the largest domain of ac-

cessible nnn vectors (53% of the hemisphere) is reached at θ = 35.3◦. The smaller regions

represent the ranges for µτ = 0.3 and 0.4. As µτ approaches 0, the region of accessibility

approaches the triangle described by 0◦ < θ < ψ < 90◦.
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Figure 4: Positions of vectors of interest in the scheme with varying ψ and constant φ = 0◦.

a) Stereographic projection of the paths of vectors κκκ0, κκκ and eee3 in the specimen reference

frame. b) Stereographic projection of the path of vector nnn in the laboratory reference frame.

The numbers indicate locations of κκκ0, nnn and directions of change of eee3 with growing η. The

input data are the same as those for the dashed line drawn in Fig. 3, i.e., µτ equals 0.1, the

Bragg angle is 26.1◦, and ψ varies from ψmin ≈ 19.5◦ to ψmax ≈ 63.0◦.
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Figure 5: Illustration of variation of the instrumental angles Ω, χ and ϕ versus the polar

angle ψ. The input data are the same as those used for drawing Fig. 4. Also the numbering

of fragments of the mappings corresponds to that in Fig. 4.
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Figure 6: a) Disks mark numerically estimated Bragg angle θ corresponding to the largest

range of ψ for given µτ . The continuous curves represent the approximation of the optimal

θ by eq.(21) and the corresponding range of ψ obtained from eq.(11). b) The Bragg angle

θ leading to a largest fraction of the hemisphere covered by accessible vectors nnn versus µτ .

The continuous curves represent the approximation of the optimal θ by eq.(22) and the

corresponding fraction of the hemisphere obtained from eq.(11).
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