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Wilhelm Conrad RÖNTGEN

March 27, 1845 - Feb. 10, 1923, German born

Recieved the first Nobel Prize for Physics, in 1901. Earlier in 1895 when experimenting with a

cathode-ray tube, he noticed that some nearby barium platinocyanide fluoresced. So he

proposed that an unknown type of radiation (X-ray) was produced.

He also researched into elasticity, capillary action of fluids, specific heats of gases, conduction

of heat in crystals, absorption of heat by gases, and piezoelectricity.





Sources of Röntgen radiation

two phenomena which generate the X-rays:

[1] Electron transitions

[2] Change of momentum of the elementary particles (electrons)

Universum [1 + 2 + black holes]

Environment of plasma generation [1]

Thermo-nuclear reactions [1 + 2]

X-ray tubes [1]

Synchrotron [2]





X-ray tubes

- traditional way of inducing the Röntgen radiation



X-ray tube

promieniowanie rentgenowskie

catode (e.g. tungsten wire)

Wehnelt’s cylinder (electrostatic lens 

focusing the electron-beam)
electron beam anode

High voltage 

(a few tenths of kV)

Characteristics:

• white radiation 

• tube output 

• focus (point/line) 

• cooling system





Electron configuration of Cu-atom:

1s22s2p63s2p6d104s1 

K L M1s2

2s2

2p2

2p4

3s2

3p2

3p4

3d6

3d4

n (1, 2, 3…) principal quantum number (reflects the complete wave length of the electron on its orbit with r-radius)

using to estimate the electron energy.

4s1

N

l (s, p, d…) marginal quantum number (introduced for non-circular orbits) reflects the orbital moment of 

momentum: s - relates to l = 0, p – to l = 1, d – to l = 2,...). l = 0, 1, 2, 3… n-1

Additional two quantum numbers m and s are required for a complete description of the electron state in the atom:

m - magnetic quantum number regards a various orientation of the orbital which corresponds to specific movement

state: m = -l, (-l+1), …, 0, +1, +2, …, +l.

s - spin quantum number of electrons: s = ±½

Quantum numbers describing the electron configuration are the result of description its movement by a wave equation.

Non-zero solution (non-zero amplitude of electron) in the wave equation for the electron needs a complete number of its

wave length for the defined orbit. For that reason the sequential numbers (quantum numbers) accurating the orbitals have

been introduced: e.g. ……….. 8 states (2-”s” and 6-”p”) for the electron quantum number n = 2,

……… 18 states (2-”s”, 6-”p” and 10-”d”) for the electron quantum number n = 3, and so on.



Ka1

by. Moseley (1913-14):

s – constant electron number,

n1 i n2 – principal quantum numbers for the shells of interchanging electrons
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High voltave

Characteristics:

• white radiation 

• tube output (actual) 

• focus (point/line) 

• cooling system
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Short-wave limit of spectrum 
(krótkofalowa granica widma)
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Ibackground spectrum = AiZVm

W (medicine)



Intensity of the characteristic X-ray of i-th element, generated by electrons in excited, 
micro-volume area of massive material is proportional to contcentration of the element 
and depends on a depth-distribution of the emission effect

   



0

0 zdzCnI iii 

n0 – number of electrons falling down on sample, 

Ci – concentration of i-th element in sample,

i(z) – induction distribution function of X-ray of the i-element in materials

Base of X-ray microanalysis

Moseley law ( ~1/Z) allow to explain the sequence of elements in periodic system which is based

on the atomic number (Z) not mass number (M). For that reason, eg. cobalt (ZCo=27) proceeds

nickel (ZNi=28), in spite of MCo (58.93) > MNi (58.69)



X-ray absorption

absorber

X-ray 

source

detector

nxeII s 0

xn
I

I
s




s  (collision) cross-section

1

1

I I-I

sn ≡ m:   linear absorption coefficient

xeII m 0

s (collision) cross-section for scattering and absorption of fotons is independent of material 

density and thats why the mass absorption coefficient can be easily expressed in a form: 

sN/A or m



Absorption edge

s (collision) cross-section for scattering and absorption of fotons depends on the photon energy

and thats why the filtering of the spectrum components is possible, 

e.g. filter of Kb-component Ross’s filter Ka1-Ka2)
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Principle of filtering the Kb -component , Ka : Kb z 5:1 do 600:1
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Exemplar wavelengths of the characteristic lines [Å] (by. Int. Tabl. Cryst. V. III):

Material Ka2 Ka1 Kb1 filter of Kb1 comp.

Cr (24) 2.29351 2.28962 2.08480 wanadium (23)…… [0.016 mm]

Fe (26) 1.93991 1.93597 1.75653 manganese (25)….. [0.016 mm]

Co (27) 1.79278 1.78892 1.62075 iron (26)………….. [0.018 mm]

Cu (29) 1.54433 1.54051 1.39217 nickel (28)………… [0.021 mm]

Mo (42) 0.71354 0.70926 0.63225 zirconium (40)…….. [0.108 mm]



Properties of X-ray (Röntgen radiation)
(electromagnetic wave)

• scattering (coherent and fluorescent)

• absorption (attenuation in material medium)

• refraction (air - solid body; 1-n = 10-6) (załamanie)

• total reflection (q = 10’  30’)

• magneto-”optical” Kerr effect



Miniature X-Ray Generator with Pyroelectric Crystal

Battery Operated
APPLICATIONS

• Portable X-Ray Instrumentation

• Teaching Laboratories

• Instrument Calibration

• Research

FEATURES

• Miniature size - 0.6” dia x 0.4”

15 mm dia x 10 mm

• Low Power: <300 mW

• Runs on a standard 9 V battery

• Variable end point energy: up to 35 kV

• Peak X-Ray flux: 108 photons per second

(equivalent to a 2 mCi source)

• Solid state: Pyroelectric Crystal

• No radioactive sources

The COOL-X is a novel, miniature X-ray generator

which uses a pyroelectric crystal to generate

energetic electrons that produce X-rays in the

target material (Cu). The hermetically sealed

package has a thin beryllium window which

allows the X-rays to be transmitted. The COOL-X

does not use radioisotopes or high power X-ray

tubes. It is a self contained, solid state system

which generates X-rays when the crystal is thermally

cycled.

The COOL-X is unique, and should not be

compared with other X-ray tubes. It is thermally

cycled between 2 to 5 minutes, and does not

produce a constant flux of X-rays. The X-ray flux

varies throughout the cycle and may vary from

cycle to cycle, see Figure 4.

The use of the COOL-X in practical

applications will challenge the user’s

imagination!

AMPTEK INC. 6 De ANGELO DRIVE, BEDFORD, MA 01730-2204 U.S.A.

Tel: +1 (781) 275-2242 Fax: +1 (781) 275-3470 email: sales@amptek.com www.amptek.com



Miniature X-Ray Generator with Pyroelectric Crystal

COOL-X Output Spectrum from Cu Target



Miniature X-Ray Generator with Pyroelectric Crystal
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Metal-Jet X-ray Source – How does it 
work?

Ga (95%)/In/Sn alloy liquid metal jet, 

200 µm wide, 50 m/s velocity

Electron beam

Target spot

 Spot size: 5 - 20 µm
 Power load: up to 200 W
 Emission: Ga ka, 9.25 keV





World-wide localization of synchrotron laboratories







Industrial 

radiography
safety of exploitation, 

quality control

Public security
ilumination of passangers/baggage,

terrorism prevention

Diffractometry
recognizing the internal 

structure of matter

Sterilisation
medical tools/materials

X-ray Astronomy
observation of universum

Neutralization of 

electrostatic charges
in manufacturing the paper and 

plastics

X-ray litography
patterns on Si-plates

Metrology
thickness of coatings, 

keeping the horizontal level

Scientific research
modification of genetic 

structure by irradiation

Spectrometry
identification of chemical 

composition

Medical 

diagnostic/therapy
human/animal treating,

life elongation/comfort

Investigation of 

fast phenomena
flash inspection in 

synchrotron

Archeology
non-destructive inspection 

of historic objects

Usage

of 

X-rays

Based on „Kalendarz 

Politechniki Opolskiej”, 2012

Food production 
detection of forein bodies,

preservation
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X-ray scattering by a free atom
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Size of atom can not be neglected; electrons are not concentrated in one point!
For that reason the scattered wave is summarized over all electrons in atom, 

regarding amplitudes and phases of individual waves

Thomson factor
(mass of nucleus can be neglected)

So

S1

S = s1 – s0So

r

Dl = r s1 – r s0 = r(s1 – s0 ) = r S

S1



Fine-Structure Constant

Arnold Sommerfeld:

e – electron charge
ħ = h/(2p – Planck constant

c – light velocity 
e0 – permitivity of free space (przenikalność elektryczna próżni)

a ≈ 1/137 (a ≈ 1/128 for energy = particle mass)



By watching the far distant 

quasars the astronoms can 

to register a primeval light 

The world-largest radiotelescope 

(40m) with moving focusing 

cap: 

Green Bank (West Virginia,USA)

New project: 
summarized area of the 
focusing cap = 1 km2

(Australia, 2012-2015):



Absorption spectrum



properties

…Ultrsounds 
(defctoscopy, tomography, acoust. emission)

Diagnostics of
microstructure

…Mechanical tests 
(strength, hardness, scharpness)

…Calorymetry

…Chemical/biological tests
(corrosion proof, biocompatibility)

Electron beam

g-ray

Hard X-ray

Ultra-violet

Visible light

Infra-red
Thermal rad.

Microwave

Mobile telephone
Radio-TV frequency

10 pm

100 pm

1 nm

10 nm

100 nm

1 mm

10 mm

10 mm

100 mm

1 m

100 mm

1 mm

Soft X-ray

Microstructure inhomogeneity
…distinguishing feature of FGM



X-ray diffraction 

phenomenon. Part I 

X-ray diffraction 
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geometrical

Diffraction theories of X-ray on condensed matter

describes only directions, in which the 
diffracted rays are observed (no intensity 
predictions)

Various extent of generality

kinematical

dynamical
Describes diffraction on materials with
enough large areas of coherent scattering
with L dimmension ( mL > 0.01)

describes (among others) intensity of
radiation and is correct in the case of defected
and relatively fine-grained materials to fulfil
relation: I(scattered) << I(diffracted). No extinction
is regarded



Christian HUYGENS
(1629-1695), 
1678: outline of light theory

HUYGENS explained 
mechanizm of waves 
propagation

FRESNEL
1818: perturbation in any point 
is a result of interference of 
elementary waves regarding its 
amplitude and phase



Thomas YOUNG (1773-1829),

1802 carried out and explained the interference phenomena
Estimated wavelength.
Other interests: elasticity of solid bodies (E modulus)
- for steel E = 2.0 x 100 000 MPa
- for bronze E = 1.0 x 100 000 MPa
- for glass E = 0.6 x 100 000 MPa



Interference





Effect of laser light diffraction on two slits

http://www.wikipedia.org/wiki/Image:Laserdiffraction.jpg
http://www.wikipedia.org/wiki/Image:Laserdiffraction.jpg


Scattered coherent waves:

Interference constructive           Interference destructive

Diffractionugięcie, odbicie  =  scattering + interference

Mathematical formulae: von Laue* (1912)

_________________________

Max von LAUE (1879–1960), physiker, prof. univ. Zurich and Berlin,

Discoverer of X-ray diffraction, Nobel Prize, 1914



Scattering on many atom layers in crystalline materials

a(cosa – cosa0) = H

Condition of X-ray diffraction on a lattice axis:

a0
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a

b(cosb – cosb0) = K
c(cosg – cosg0) = L

LAUE’s equations

(condition of X-ray diffraction on a 

space lattice of crystal)

DS = a(cosa – cosa0) = H





X-ray scattering by a free electron

Kinematical theory of interference 
(Max von LAUE [1879 - 1960, discovered diffraction of X-ray on crystals)
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Electromagnetic, polarized/unpolarized waves → free electron → secondary source of vibration:
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X-ray scattering by a free atom
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Size of atom can not be neglected; electrons are not concentrated in one point!
For that reason the scattered wave is summarized over all electrons in atom, 

regarding amplitudes and phases of individual waves

Thomson factor
(mass of nucleus can be neglected)

So

S1

S = s1 – s0So

r

geometrical difference: Dl = r s1 – r s0 = r(s1 – s0 ) = r S

S1
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Phase difference (phase shifting):
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electrical charge 

in B point:

 dvr

Finally, amplitude of wave scattered in B point:  
Sri

dver



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
2

    dverSf
V

Sri

 
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
2Amplitude of wave scattered in all points (electrons)

in S direction (atomic scattering amplitude):Let’s assume the coordinate system in point A; then, charge in point B: (r)dv 
where (r) is a charge density in voxal dv located in r distance

X-ray scattering by a free atom



atomic scattering amplitude characterizes an ability

of atom to scattering X-rays. 
In other words: the numerical value f exhibits how
many times the amplitude of wave scattered by an
atom is greater than one of scatterd by a singular
electron

atomic scattering amplitude 
for a spherical distribution of 
charge in atom:

    dv
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The greater atomic number of element, the greater atomic amplitude. 
That’s why, 
e.g. X-ray scattering by 
hydrogen is very poor     ZdvrrfSfor  



0

240,0 p

amplitude scattered by atom

f = ______________________________

amplitude scattered by elektron

X-ray scattering by a free atom
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atomic scattering amplitude



atomic scattering amplitude
Regarding the thermal oscillation of atoms (possible maximal ampl. ≈ 0.1 Å):

Meff  0




p

sin
8 22uM 

2u - mean square oscillation of the atom from a balance position



Geometry of diffraction (but not intensities) 

can be expressed relatively clearly 

using the Bragg (Wulf-Braggs) low:



incident x y

A

B

This only occurs for scattered waves with an outgoing angle of:

outgoing = incident

Diffraction on a singular layer of regularly distributed atoms

outgoing

Two coherent waves A and B are in phase (in consistency) (and reinforcing each 

other) giving a diffracted beam (bended beam), only when they travel the same 

distance, i.e. when x and y are equal:

x = y

incident waves. This is true for incident waves of any wavelength.



padania

x y

A

B

odbicia

Condition of interference:

x = y



dhkl



Case of many layers of regularly spaced atoms – as in crystal

incident

x y

C

D



d

2diffracted = 2outgoing

Bhkldn  sin2

As we alredy known: incidence = outgoing 

How the coherent waves are scattered on many atomic layers?

Difference of routes for scattered C and D waves: x + y = 2dsin = n



For defined pair of dhkl and  there are a few values of 

diffraction angle hkl predicted by the ….. law (quite so!)

Bhkldn  sin2

Bragg equation ?

Scattering on many atomic layers in crystal



A basic diffraction equation of X-rays: Bragg equation

• in Anglo-Sakson literature → Bragg (Braggs) equation
• in Russian literature → Bragg-Wulf or Wulf-Bragg equation

…. What was the truth?

William Henry BRAGG (1862–1942), physicist and crystallographist, prof.
Univ. of London, member and chairman of the Royal Society, Nobel Prize
1915 (along with son W.L. Bragg) for study of crystals structure.

William Lawrance BRAGG (1890–1971), physicist and crystallographist, prof.
Univ. of Cambridge, member of the Royal Society, Nobel Prize 1915 (along
with son W.H. Bragg) for study of crystals structure.

Gieorgij W. Wulf (1863–1925), crystallographist, prof. Univ. of Kazań,
Warsaw (1899–1906) and Moscow (since 1918), member of the Science
Academy of USSR. Study in Warsaw, Munich and Paris. In 1913 returned to
Moscow and begun dissemination of Laue’s discovery.



…by Bragg:

m

e


2

Adnotation at the end of the work of G.W. Wulf (sent from Russia) from 1913: „Eingegangen 3

Februar 1913”

where  = dhkl, e = cosy (y – angle between incident beam and normal to

diffracting lattice plane), m – order of reflection)

Bhkldn  sin2

Gieorgij W. Wulf – two his works from beginning 1913 in Russian [Fizika, 1913,

zesz. 1, s. 10 and Priroda, 1913, s. 27] concerned to interference of X-rays and its

behaviour in passing through the crystals. He known the earlier works of W.L.

Bragg from 1912r.

[Proceedings of the Royal Society, 1913, 88, 428]

„Ueber die Kristallroentgenogramme”
[Physikalishe Zeitschtrift, 1913, z. 6, s. 217]

….by Wulf:

Adnotation at the end of the work of H.W & W.L. Braggs from 1913: „Received April 7, 1913”

y cos2 hkldm 



m

e
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2

Bhkldn  sin2

Base law (equation) of diffraction theory:

y cos2 hkldm 

Bragg law (equation)

Braggs – Wulf law (equation)

Wulf – Braggs law (equation)

Wulf law (equation)

Braggs law (equation)



Scattering on many atomic layers in crystalline materials



2B

2B

X-ray diffraction on polycrystalls

Polycrystal – definition

Petrus Josephus Wilhelmus Debije 

(after change: Peter Joseph William Debye)

1884 (Maastricht) – 1966 (USA) 

Debye cones





a(cosa – cosa0) = H

n = 2dhklsinhkl

Summary of the geometrical theory of diffraction: 

delivers two equivalent conditions of diffraction phenomena:

• scalar – Bragg equation:

• vector – Laue conditions:

n ≡ H → order of reflection

geometric



Ihkl =    kIhkl +   dIhkl

Kinematic

component

Dynamic

component

• extinction (I- and II-order)

• anomalous absorption (Bormann effect)

• diffraction on polycrystals

• absorption 



Interaction of singular wave with a material particle (atom) - scattering



Interaction of singular wave with many material particles (atoms) – scattered 
waves interfering in a few directions, reinforcing each other = diffraction. 

Its possible on a periodic structures only



phase diff. = ¼ p

phase diff. = p

phase diff. = 0 

or = n x 2p

Remembrance: for understanding the diffraction geometry ( , amplitude =,  ≠) (superpozition)

phase diff. = ½ p



Interference of waves

product wave

component wave

component wave



Elementary lattice cell – result of 
translations of the basoc elements of 
structure: represents a complete 
motif of a crystal structure

x

y

z

o

Scattering X-rays on crystal

c

b

a



o

b

c

a

S1

S0

Scattering X-rays on crystal



Difference of the wave phases scattered on A and B electrons:

Srl


DDD


p




p

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Because r = xa + yb + zc (where x, y, z are coordinates of the atom in point B
expressed in fractions of the lattice periods a, b, c) and S = H (S1 – S0=H),
replacing: H = ha* + kb* + lc*, (H – vector perpendicular to diffracting plane
hkl) the following relation can be written:

D = 2p(hx + ky + lz)

Product amplitude from all atoms in the elementary lattice: 
F = F1 + F2 + F3 + … + Fn







n

j

lzkyhxi

jhkl
jjjefFF

1

)(2pStructure amplitude, 

non-measurable directly

Ihkl ~ Fhkl∙ F*hkl

Ihkl ~ F2
hkl

Scattering X-rays on crystal



exp(0) = 1

Various combinations of the hkl and uvw are possible which relfect in diversity
of the F value:

F = 0 - no diffraction effect (impossible to registering) 

F = f1+f2 - strong diffraction effect

  lwkvhuiffF  p2exp21

  

  lwkvhuif

ifAF n



 

p

p

2exp

0002exp

2

1

2

1



For bcc lattice, number of atoms deduces to TWO:

1 in 0,0,0 point (atomic scattering amplitude f ), 
2 in ½, ½, ½ point (amplitude f ).

   lkhif

lkh
iffF





















p

p

exp1

222
2exp



When diffraction occurs on the lattice for which h+k+l is odd (nieparzysta), the
2nd term = -1;

Fhkl(niep.) = f(1-1) = 0

When h+k+l is even (parzyste), the 2nd term = +1;
Fhkl(parz.) = f(1+1) = 2f

Conclusion: in the case of X-ray scattering on bcc lattice, diffraction is not
observed for the planes which h+k+l is odd, (forbidden reflections)

   lkhif

lkh
iffF







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




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
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Intensity of diffraction effect I(hkl) at defined Bragg angle (hkl) for homogeneous phase of powdered sample:

 I
I A

r

e

m v
F p LP
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where: I0 - intensity of incident beam, A – cross-section of incident beamj [m3],  - wavelength [m],

r – radius of diffractometer, m0 – constant value, e- electric charge of electron [C], m – mass of electron [kg], 

v – volume of elementary lattice cell [m3], F(hkl) – structure amplitude (structure factor), 

p(hkl) – multiplicity of lattice planes {hkl}, LP(hkl) – geometrical, (Lorenz-polarization) factor, 

e-2M - Debye-Waller factor, m – liniear absorption coefficient [m-1].
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Indexing the crystallographic planes and directions

o

b

c

a



Miller indicies – are notation of the planes and directions defined in
crystallographic lattice based on the elementary lattice cell.

Crystallographicdirection – fractions of the basal vectors of the 

lattice cell [uvw], where  u, v and w are complete numbers. 
The family of directions crystallographically equivalent <uvw>.



a

b
<01>

<10>

<15>

<21>

<11>

<-1 4>

Crystallographic directions in 2-D orthogonal lattice

a

b



Miller indicies for lattice planes are expressed in form (hkl),

where h, k, l are complete numbers indicate to how many parts of the

basal periods a, b, c are divided by the plane

(na ile części dana płaszczyzna (najbliższa początku układu) dzieli

podstawowe periody na osiach układu współrzędnych).

Family of crystallographically equivalent planes: {hkl}.



Miller indicies of a crystallographic plane



Basic families of the lattice planes



x

y

z

o

b

c

[0
0
1
](100)

(010)

(001)

(110)

(1,-1,0)

(111)

{111}

(-1,1,0)

a



(112)

[112]

x

y

z

o
b

c

[0
0
1
]

a



X-ray diffraction 

phenomenon. Part II 

X-ray diffraction 

phenomenon. Part II 

Jan T. Bonarski

Instytut  Metalurgii  i  Inżynierii  Materiałowej
im. Aleksandra Krupkowskiego  

POLSKIEJ  AKADEMII  NAUK w Krakowie



Indexing the crystallographic planes and directions

o

b

c

a
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Miller indicies – notation of the planes and directions defined in

crystallographic lattice based on the elementary lattice cell.

Crystallographic direction – fractions of the basal vectors of the 

lattice cell [uvw], where  u, v and w are complete numbers. 

The family of directions crystallographically equivalent <uvw>.
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a

b
<01>

<10>

<15>

<21>

<11>

<-1 4>

Crystallographic directions in 2-D orthogonal lattice

a

b
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Miller indicies for lattice planes are expressed in form (hkl),

where h, k, l are complete numbers indicate to how many parts of the

basal periods a, b, c are divided by the plane

(na ile części dana płaszczyzna (najbliższa początku układu) dzieli

podstawowe periody na osiach układu współrzędnych).

Family of crystallographically equivalent planes: {hkl}.



Crystalline body – condensed matter with 3D ordered structure.

Properties od crystals: electrical, magnetical, optical and mechanical,
contrary to amorphous bodies.

Single (mono)- or Polycrystals

Single crystals: mono-phase, non-defected crystalline body, eg.:

• sapphire (Al2O3 + small amount TiO2 and Fe3O4)

• ruby (Al2O3 + small amount Cr2O3)

Polycrystal: conglomeration of single crystals (micro-meter dimension)

Elementary cell

Ideal- and real crystals



Spatial lattice – infinit conglomeration of ideal elementary cells
Lattice nods – points of intersection of edges of the elementary lattice.
Lattice lines – lines indicated by selected lattice nodes.
Lattice planes – planes indicated by the selected lattice nodes.
Crystal structure – way of distribution of atoms (ions, particles) in elementary cell.



o
b

c

a

TRICLINIC

MONOCLINIC
RHOMBOHEDRAL  ORTHORHOMBIC

TETRAGONAL

HEXAGONAL  RHOMBOHEDRAL

REGULAR

TRIGONAL
(describing analogically to hexagonal)

Regarding the values of lattice constants of the crystals and symmetry of
spatial lattice 6(7) various crystallographic systems have been defined.
Lattice periods a, b, c and angles a, b and g.

An elementary cell which translation along X, Y, Z reconstruct whole spatial
lattice can be distinguished in each of the crystallographic system.

Cells: primitive P, centered: C (on basal planes), F (face-centered), I (spatial-centered)
Each of the 6(7) crystallographic system, dependig on its symmetry, have a
strictly defined number of the elementary cells. As it was prooved, there are 14
various cells – Bravais cells



Crystallographic system: REGULAR

Bravais cells:

a0 = b0 = c0 a  b  c  90°

P (primitive)I (body centered, bcc, A2)F (face centered fcc, A1)







Crystallographic system: TETRAGONAL

Bravais cells:

a0 = b0 ≠ c0 a  b  c  90°

P (primitive)I (body centered)

Tetragonal: eg. corundum, quartz, 
turmalinum, a-Fe_martensite



Crystallographic system: RHOMBOHEDRAL

Bravais cells:

a0 ≠ b0 ≠ c0 a  b  c  90°

P (primitive)I (body centered) F (face centered)C (basal-planes centered)

Rhombohedral: eg. topaz, aragonite 
(variant of CaCO3, eg. Conus 
Marmoreus)



Crystallographic system: MONOCLINIC

Bravais cells:

a0 ≠ b0 ≠ c0 a  g  90° , b ≠ 90°

P (primitive)C (basal-planes centered)

b

Monoclinic: eg. cellulose (crystalline 
part),  jade (nefryt)



Crystallographic system: TRICLINIC

Bravais cells:

a0 ≠ b0 ≠ c0 a ≠ b ≠ g ≠ 90°

P (primitive)

b

g

a

Triclinic: eg. turquoises (turkus), 
amazonite

a
b

c



Crystallographic system: HEXAGONAL

Bravais cells:

a0 = b0 ≠ c0 a  b  90° , g  120°

P (primitive)

gg

c0 /a0 = 1.633

hcp (hexagonal close packed)

Ti (c0 /a0 = 1.588)

Mg (c0 /a0 = 1.624) 

Co (c0 /a0 = 1.623)

Zn (c0 /a0 = 1.856) 

Cd (c0 /a0 = 1.886) 







Crystallographic system: HEXAGONAL

A9 (graphite type structure)

c0 /a0 = 2.76

typical layered structure

Allotropic variety of carbon:

• Diament (regular + hexagonal)

• Graphite b (rhombohedric  hexagonal)

• Fulerens C60 (since 1985r)

• Graphene (since 2010r)

Graphite-type structures – strong anizotropy of properties: cleavage (łupliwość),

thermal expansion, electric conductivity



Crystallographic system: TRIGONAL

RHOMBOHEDRAL

Bravais cells:

a0 = b0 = c0 a  b  g ≠ 90°

P (primitive)

g

a0 = b0 ≠ c0 a  b  90° , g  120°

a b

Rhombohedral: eg. graphite b

by. Int. Tabl. Cryst., 6 crystallographic families and 7 crystallographic systems 

TRICLINIC

MONOCLINIC

RHOMBOHEDRAL  ORTHORHOMBIC

TETRAGONAL

HEXAGONAL  RHOMBOHEDRAL

REGULAR

TRIGONAL
(describing analogically to hexagonal)
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50 × 50 × 8 mm3
50 × 50 × 10 mm3

a-corundum a-Al2O3

Rhombohedral Hexagonal lattice (R-3c): 

a0 = 4.7580 Å, c0 = 12.9910 Å, a = b = 90°, g = 120°

silicon carbide SiC
Hexagonal lattice (P63mc):

a0 = 3.0810 Å, c0 = 10.0610 Å, a = b = 90°, g = 120°



Miller-Bravais Indicies

In 3-digit Miller’s notation (planes and directions) for hexagonal
system the crystallographicaly equivalent planes have various indicies.
The inconvenience is not exists in 4-digit Miller-Bravais notation.

Direction expressed as [UVTW] where U, V, T and W

are complete numbers, additionally T = -(U + V), …but
indicies of directions can not be derived directly from
the equivalent Miller indicies

Plane (HKiL), where H, K, i and L are complete

numbers, where i = -(H + K)

U = (2u – v)/3

V = (2v – u)/3

T = - (u + v)/3

W = w

H = h

K = k

i = - (h + k)

L = l



Crystallographic system: HEXAGONAL

Bravais cells:

a0 = b0 ≠ c0 a  b  90° , g  120°

P (primitive)

g g

c0 /a0 = 1.633

b

c

a



Crystallographic system: HEXAGONAL a0 = b0 ≠ c0 a  b  90° , g  120°

g  

x1

[1210]

x3

x2 y
[010]

x



y

x x

y

by Roe
(Matties)

by Bunge



g  

x
y

z

o

[0
0
0
1
] 

≡
 [
0
0
1
]

(1120) ≡ (110)

(1011) ≡ (101)

(1210) ≡ (120)

(0001) ≡ (001)

(1010) ≡ (100)

Zn, Cd, Mg, Co, Ti, Zr

Planes:

• basal, 

• prismatic, 

• pyramidal

(1122) ≡ (102)



g  

x
y

z

o

(110)

międzypłaszczyznowe.

≡ (1120) 

≡ (1210)(120)

…thus, what for we use the 4-digit (Millera-Bravais) indicies
instaed of the 3-digit (Miller) one if the both describe the same
(hexagonal) system?

…because the 4-digit (Millera-Bravais) indicies better express the
lattice symmetry, eg. Lattice planes (110) and (-1 2 0)



(112)

x

y

z

O

b

c

[0
0
1
]

a

(001)

1 1 2  1 1 2

(001)(112)

0 0 1 0 0 1

1-0, 0-1, 0-0

[110]

Crystal zone law:

h1 k1 l1 h2 k2 l2

zone axis [uvw]:

u = k1 l2 - k2 l1

v = l1 h2 - l2 h1

w = h1 k2 - h2 k1

gdy dwa wektory są ┴ to ich 

iloczyn skalarny musi = 0

[hkl] ∙ [uvw] = 0

hu + kv + lw = 0

W układzie heksagonalnym  analogicznie, ale użyć 3-wskaźnikowego zapisu

Crystal zone (pas krystalograficzny)



Idea of reciprocal lattice



 cba

cb
a




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 cba

ac
b




*

 cba

ba
c




*

  Vcba  V – volume of elementary cell of the real lattice, defined by vectors

a* is perpendicular to b and to c  → a*  b = a*  c = 0

b* is perpendicular to c and to a → b*  a = b*  c = 0

c* is perpendicular to a and to b → c*  a = c*  b = 0

gb

agb
a

sinsin

coscoscos
cos * 



ga

bga
b

sinsin

coscoscos
cos * 



ba

gba
g

sinsin

coscoscos
cos * 



Reciprocal lattice is defined by 6 parametrs, and given equations –

using parameters of the real space – allow to calculate the length of vectors:



Properties of reciprocal lattice



EWALD’s construction

Peter Ewald publication (in 1913) of geometrical construction
for interpretation of diffraction patterns.

Odkrycie dyfrakcji promieni rentgenowskich (M. von LAUE ), Nagroda Nobla 1914r.

równanie

W.L.Bragga:

m

e


2

Bhkldn  sin2
[Proceedings of the Royal Society, 1913, 88, 428]

„Ueber die Kristallroentgenogramme” [Physikalishe Zeitschtrift, 1913, z. 6, s. 217]
równanie

G.V.

Wulfa:

_________________________

Nagroda Nobla 1915 (wraz z ojcem W.H. Braggiem) za badania struktur kryształów.

Początek I-wszej Wojny Światowej 1914r

gdzie  = dhkl, zaś e = cosy (y – kąt pomiędzy wiązką padającą a normalną do płaszczyzny

uginającej), m – rząd refleksu)



Diffraction condition:

S1/ – S0 / = H – diffraction vector

000

Phk0

r = S0/

S1

S0

Ewald’s sphere

H*hk0|H*hk0| = n/dhk0 – reciprocal lattice vector 

for (hk0) planes

2B

S1 – S0 = S – scattering vector

S1/

By the chart:

½ |H*hk0| = |S1/| sin(B) 

n = 2dsin(B) |S1| 

When the beam is fallig down on crystal, the Ewald’s sphere indicates exactly the
lattice planes (families) which fulfill Bragg’s diffraction condition. For a 2D-lattice,
the Ewald’s sphere is a circle.



000

Phk0

r = S0/

H*hk0

2B

S1/

S0/

P2h2k0

H*2h2k0

H*3h3k0

P3h3k0

S1/ – S0 / = nHhk0



000

Phk0

r = S0/

H*hk0

2B

S1/

S0/

S0/

r = S0/

2B



Ewald’s sphere

Reciprocal 

lattice

Diffraction on 3D-lattice



[011] b

SADP electron diffractions from melt spun NiTiZr ribbons



Anomalous X-ray scattering

 Application in identification of early stage of precipitation (ASAXS)
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X-Ray Texture 
Tomography

Jan Bonarski

Polish Academy of Sciences

Aleksander Krupkowski Institute 

of Metallurgy and Materials Science

Kraków, POLAND

http\\www.al.imim-pan.krakow.pl
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X-ray texture tomography is a new, non-destructive method of the

investigation of the near-the-surface layers of the sample.

The method is based on single-layer pole figures, which are two-

dimensional density distribution of poles of the lattice planes, referred to

the near-the-surface layer of precisely defined thickness.

Because some of the elements of this procedure are similar to the known

techniques of spatial imaging of objects localised inside some definite

volume, such as magnetic-resonance tomography, seismic tomography, or

positron emission tomography, the introduced described investigation

method has been called X-ray texture tomography.

In this newly introduced concept the meaning of the commonly used

expression "tomography" becomes extended, as it refers to the imaging of

a material feature, as represented by texture, and not to material objects

(e.g. accumulation of tissues).

Texture tomography represents a research tool, which may be applied in

the analysis of texture inhomogeneity, its heredity, the control of the

process of multi-layered structures etc.
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How ?
Electron, x-ray and neutron diffraction  techniques (SEM, TEM, EBSD, OIM, XRD, ND), 

Optical observations,

Investigation of crystallographic texture:

What for?
• For controlling of technological processes,

• For understanding the “natural construction” of materials and it application in technology

• For knowing of geological history of the Earth,

• For archeological/medical expertises (texture of animal/human bones) 
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Crystallographic texture:
What is it?
a statistical feature of polycrystalline materials, manifests by preferred crystallographic 

orientation of grains, particles or distinguished sub-areas.

Sources of texture
• natural anisotropy of crystals (determined crystal symmetry), 

• technological processing of materials (crystallization, deformation)

• Nature (seismic vibration of Earth, “architecture” of  plants, selective synthesis of proteins) 

Yes
deep drawing steel <111>

electromagnets

transformators (Fe + 3%Si)

photovoltaics (Si-multicrystalline solar cells)

superconductivity

.......

Is the texture advantage or disadvantage of materials? 

No
structure inhomogeneity 

diffraction phase identification/analysis

Problems of samples standardization

electrodepositing (inheritance effect)

..........
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Examples:

• Elements working in friction and fatique conditions (bearings),

•Deposited coatings,

• Solar cells.

From application point of view, the properties

(structure and texture) of a relative thin,

near-the-surface layers of constructing elements

play a very important role.
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surface

disturbed layer 

amprphized

buried layer

non-disturbed

bulk of crystal

Microstructure of the broken cross-section of (001)-oriented Si

single crystal after implantation (P+ ions) and subsequent thermal

treatment, registered by means of contact AFM technique.

1.0 mm
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deposited

Zn-

protective

layer

substrate

(deep drawing

steel sheet)

10 mm

Microstructure of the cross section of deep drawing steel sheet

with deposited Zn-protective layer (thickness of 7.5 mm) observed

in SEM [IMIM PAN, Kraków]
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During texture analysis based on the back-reflection pole figures registered by

means of x-ray diffraction, information depth {X0.01} changes with the sample

position in goniometer, determined by the , c angles.

Changes of information depth
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of inhomogenous

texture.
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The information depth {X0.01} can be controlled and kept at the constant level by:

• changes of wavelength,

• introducing an additional goniometer angle :

Geometrical conditions of measurement at

constant information depth (CID)

X0 01
001

.

ln( . ) sin( ) sin( )

sin( ) sin( )
cos  

  

  


m

   

   
c


   

    c


  

  


sin( ) sin( )

sin( ) sin( ) cos

1

where, the geometrical factor     c, ,

determines the condition of registration of the pole figure with constant

information depth, termed here as a single-layer pole figure.
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15

22

68

The izo-depth lines 

correspond to the 

geometrical conditions 

(goniometer angles of 

sample tilting  and c) 

for registration of

15mm, 22mm and 68mm

single-layer (311) pole 

figures.

Information valley of X-ray CoKa radiation in Al sample for the 311 Bragg reflection.
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• desymmetrization of focalization conditions (offset from Bragg-Brentano

geometry),

• deformation of the peak profile and the pole figure coordinates, 

• necessity of mathematical transformation to the symmetrical system,

• arising of blind areas in experimental data,

• necessity of additional geometrical correction of the registered pole figures.

Consequences of introducing 

the additional sample tilting angle 
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 < 0 > 0

Transformation of the coordinates

   bac ,,, 
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 < 0

 = 0

 > 0“blind” areas

   a c  c  arccos cos cos arcsin sin cos b  
c

a
  









arcsin sin

sin

sin

  
p


p

2 2

0
2

 c
p

   bac ,,, 
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Experimental verification of the 

X-Ray Texture Tomography (XTT)

has been performed on a model sample of layered

structure with accurately defined and known texture

inhomogenity.
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standard Al sample



161

111
CPF

a

TD

RD

111
CPF

b

TD

RD

111
CPF

c

TD

RD

Set of (111) back-reflection pole figures for the standard sample Al with 

inhomogeneous texture (CoKa radiation used):

a) registered traditionally (information depth: 44.5 mm – 11.5 mm), 

b) figure of top layer only (constant information depth, ca. 15.0 mm),

c) diference between the (a) and (b) case.

top layer

standard Al sample

bulk
averaged P.F.
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Identified texture components, volume fractions and inhomogeneity degrees for the 

standard Al sample, based on diffraction of CoKa and CoKb x-ray beams. 

No 

of 

com

pone

nt

Euler angles

of component

Volume fractions of the components 

[% obj.] and they degree of inhomogeneity DI

Miller indices of 

texture component 
Sample areas subjected  to 

diffraction of 

CoKa & CoKb

Separated layers   

T = top layer

B = Bulk

1

[]



[]

2

[]

CoKa

[%vol]

CoKb

[%vol]

DI T

[%vol]

B

[%vol]

DI (hkl)[uvw]

1 31.1

2

36.7

0

26.5

7

42.2 45.1 0.1 52.7 0.0 2.0  (122)[21]  S’

2 0.00 35.2

6

45.0

0

23.7 26.9 0.1 18.4 0.0 2.0 (112)[10] Copper’

3 58.9

8

36.7

0

63.4

3

9.7 11.0 0.0 0.0 34.2 2.0 (132)[63]  S

4 90.0

0

35.3

6

45.0

0

7.5 8.5 0.1 0.0 18.4 2.0 (112)[11] Copper

5 35.2

6

90.0

0

45.0

0

5.4 5.2 0.1 5.2 0.7 1.5 (110)[11] Brass’

6 54.7

4

90.0

0

45.0

0

2.6 2.7 0.0 0.8 5.3 1.5 (110)[12] Brass

7 0.00 0.00 0.00 1.4 1.1 0.2 4.9 4.9 0.0 (001)[100] Cube

The rest  7  0 ----  18  35 ---- --------------

Background 0 0 ---- 0 0 ---- --------------
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top layer (f2)reference Al sample: ODF of bulk (f1) averaged texture (f1 + f2)

   f f o o

2 1 2 1 1 290 90   , , , ,   

Copper

Copper’

Brass
Brass’
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       f g A f g A f g    1 1 2

A e e
X
w

X
w

X
 

  


m 
e

e

ln

Weight factor:

XW – thickness ot top layer (ca. 15 mm)

Xe – thickness of the chosen near-the-surface layer  (15 mm, 22 mm, 68 mm,)

Expected (simulated) texture:
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Thickness of the
tomographic layers
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CubeS
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22 mikr.

68 mikr.

Verification of  

X-ray texture tomography
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Texture functions (sections 2=45o) of X-ray tomographic layers 

for electrodeposited Cu (10mm thickness) on Cu substrate:

a) information depth  X0.01 = 5mm

b) information depth  X0.01 = 10mm

c) information depth  X0.01 = 12mm

d) difference ODF of 10mm - 5mm

e) difference ODF of 12mm - 10mm

f) texture function of substrate
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Texture tomography of Zn

corrosion-protective layer

(thickness of 7.5 mm),

deposited on deep drawing

steel by electrodeposition

technique.

substrate 

(ferritic deep-drawing steel)

10 mm

Presented texture functions

(2=45o sections) of Fe-Zn

composition:

near-surface layer (5.0 mm)

obtained by x-ray texture

tomography,

averaged texture (7.5 mm) of 

Zn layer obtained by the back-

reflection pole figures 

measured conventionally.

hcp

fcc

hcp
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111
RPF

TD

RD

200
RPF

TD

RD

111
CPF

TD

RD

200
CPF

TD

RD

111
CPF

TD

RD

200
CPF

TD

RD

Single-layer pole figures with constant information depth X0.01 =15mm, applied in x-ray texture tomography 

procedure for reference Al sample; registered by goniometer (top), mathematically transformed (middle), and 

calculated from ODF by ADC method (bottom). The hkl indices corresponds to the measured reflections.

Calculated (complete): 

Max.= 4.9, Izolinie: 1, 2, 3, 4

Mathematically transformed: 

Max.= 6.8, Izolinie: 1, 2, 3, 4, 5, 6

Experimental: 

Max.= 8.4, Izolinie: 1, 2, 3, 4, 5, 6

Orientation distribution function (ODF) for the near-surface layer of 15mm

thickness, of reference Al sample, obtained by x-ray texture tomography. 

Calculated of the ODF was made by ADC method using LaboTex software.
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111
RPF

TD

RD

200
RPF

TD

RD

Calculated (complete): 

Max.= 4.9, Izolinie: 1, 2, 3, 4

Mathematically transformed: 

Max.= 6.8, Izolinie: 1, 2, 3, 4, 5, 6

Experimental: 

Max.= 8.4, Izolinie: 1, 2, 3, 4, 5, 6

Single-layer pole figures with constant information depth X0.01 =22mm, applied in x-ray texture tomography 

procedure for reference Al sample; registered by goniometer (top), mathematically transformed (middle), and 

calculated from ODF by ADC method (bottom). The hkl indices corresponds to the measured reflections.

111
CPF

TD

RD

200
CPF

TD

RD

111
CPF

TD

RD

200
CPF

TD

RD

Orientation distribution function (ODF) for the near-surface layer of 22mm

thickness, of reference Al sample, obtained by x-ray texture tomography. 

Calculated of the ODF was made by ADC method using LaboTex software.  
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Texture tomography of HfN

layer (thickness of 0.5 mm),

deposited on Si (111)-oriented

single crystal by the reactive

sputtering technique.

Presented texture functions

(2=45o sections) concern to

the near-surface layers of

0.2 mm (a), 

0.4 mm (b), 

0.5 mm (c). 

Averaged texture of HfN layer, 

obtained by means of the 

conventional back-reflection 

pole figures. 
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X-Ray texture tomography represents a new, non-destructive method

of the investigation of the near-the-surface layers of the sample.

It is research tool, which may be applied in the analysis of texture

inhomogeneity, its heredity, the control of the process of multi-layered

structures etc.

Another possible applications the constant information depth (CID)

measurement technique:

• deep-profile of phase volume fraction (phase volume tomography)

• deep profile of residual stresses (stress tomography)



Useful methods and 

the latest achievements

in X-ray diffraction

Jan T. Bonarski

Useful methods and 

the latest achievements

in X-ray diffraction
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X-ray phase 

analysis

X-ray phase 

analysis



Identification of Fe structure

?

----->    [ 4 phases: a, b, g,  ? ]
T
e

m
p

e
ra

tu
ra

Czas

a (bcc)

b  (bcc)

g  (fcc)

  (bcc)



Dwie techniki pomiarów dyfraktometrycznych stosowane szczególnie 

w badaniach materiałów o strukturze krystaliczno-amorficznej (polimery):

WAXS (wide-angle x-ray scattering), [GIWAXS] … grazing incidence…

SAXS (small-angle x-ray scattering), [GISAXS] … grazing incidence

WAXS

próbka

SAXS

CCD

przystawka 

wysoko-/nisko-

temperaturowa

równoległa

mikro-wiązka

HRXD
Charakterystyka materiału
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Refleks niesymetryczny 351 Si w modzie -2

(udział obj. i rozkład obszarów zamorfizowanych)

(płaszczyzny {351} nie są pł. symetrii komórki elementarnej)



The 3-D distribution of the line profiles intensity (in logarithmic scale) for 351 reflection of the 001–

oriented Si single crystal solar cell with the buried amorphized and porous silicon layers.

Registration was performed for 8KeV synchrotron beam at constant azimuthal angle {beta}. [IMIM

PAN, Kraków & Synchrotron Lab. ELETRA, Trieste, 1999]
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mod 2 – scan

skanowanie sieci odwrotnej po sferze Ewalda



Line profiles for 004 reflection for the Si <001> single crystal before and after modification by P+

ions implantation and thermal treatment.[IMIM PAN, Kraków & Philips Analytical, Almelo, 1997]
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mod  – scan („rocking curve”)
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Rtg. Laser  









Free Electron Laser oznacza laser na swobodnych elektronach.
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