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‘Q Motivation

Comprehensive understanding of description of orientations
Is crucial for research on polycrystalline materials.

Examples:
« Orientation relationships

» Crystal deformation mechanisms

« Some phase transformation mechanisms

» Orientation mapping
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Outline

« Rotations and rotation parameterizations
« Crystal orientation and crystal symmetry
« Statistics in the orientation space

« Standard (mis)orientation distributions

« Example of texture application: effective elastic properties of polycrystals



Suggested reading

* H.J. Bunge,
Texture Analysis in Materials Science,
Butterworths, London, 1982.

» U. F. Kocks, C. N. Tome, H.R. Wenk,
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Preferred Orientations in Polycrystals and their Effect on Materials Properties,
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Outline

* Basics: orientations vs. rotations
* Numerical representation of rotations and orientations
« Composition of rotations

« Parameterizations of rotations and orientations



Basics



Basics

Rotation about a point — a displacement in which the location of
the point is not changed.

Rotation about a line — a displacement in which points of a line
retain their locations.

Euler theorem:

Rotation about a point is equivalent to a rotation about a line




Basics

y

An orientation — the equivalence class
of all displacements which differ by a translation.

With a universal reference orientation,
an orientation of an object is determined by the rotation
from the reference orientation to that orientation.

object's orientations «— rotations about an axis

one-to-one correspondence

Orientation — state Rotation — process (displacement)
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Basics

‘Mirror’ transformation with a fixed point = improper @ @
1 [~ [ N~ \

rotation
I Improper rotations change handedness Mirror i
Irror Images

0 % Q,
o

Effects of proper rotations Effects of proper and improper rotations 10




Basics

Inversion g
[~ _— /

Inversion = half-turn about a line followed by reflection
with respect to a plane perpendicular to the line.

improper rotation = proper rotation composed with inversion

11



Numerical representation
of rotations and orientations
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To refresh memory ...

Matrix — an array of m & n numbers A A e A,
A, i=l2..m j=12..n S
A A o A

Anm & n matrix A is:square matrix if m =n
zero if A;=0 1 if =
transpose of B=ATif A;=B; ' (0 if Q%]

Asquare matrix Ais:  unitif Ay = 1;= ¢; (1 if (ijk)even permutation of (123)
anti-symmetric if Ay = -A;;

P &, =1—1 if (ijk) odd permutation of (123
symmetric if A;; = A; Ik (ijk ) odd p (123)

\ 0 in other cases

Matrix algebra

Matrix product: C = AB C; = Zn:AkBkj = A,B; + A,B,; +...+ A B, = A By

Trace of square matrix Ay Tr(A):k,:Al\ii =AL A, T A,

Det of 3 & 3 matrix A;:  det(A)= g Aip Ap A

Square matrix A is invertable if det(A) is non-zero; AAl=I 13




Matrix representation of orientations

p dim object immersed in N dim Euclidean space

Orientation is determined by p
linearly independent vectors

a=l, 2, a] | [a & @
b=[b, b, b,] b, b, b

/ N=3, p=2

With orthonormal bases oo™ =| 22 a-b) |10
b-a b-b 0 1

An orientation of a p dim object immersed in N dim Euclidean space
can be represented numerically by a p x N matrix O satisfying OO™=I. 14



Matrix representation of orientations

N=p =3
detO) =1
OOT _ |3 ( )
A OT — -1
O — an orthogonal matrix
Arbitrary rotations (including improper rotations)
N=3, p=3 00" =1, detO=+1

O — a special orthogonal matrix
Proper rotations

15



Matrix representation of orientations

N=p =
p=3 Example (special) orthogonal matrix
1 [ 2/3 -1/3 2/3]
O=| 2/3 2/3 -1/3
-1/3 2/3 2/3
- N=3, p=3
(2/3 -1/3 2/3| 2/3 2/3 -1/3] [1 0 O
00’ 2/3 2/3 -1/3|-1/3 2/3 2/3 0 1 0(=1,
-1/3 2/3 2/3| 2/3 -1/3 2/3| |0 0 1

detO =+1

16



Matrix representation of orientations

N=p =3
detO) =1
OOT _ |3 ( )
A OT — -1
O — an orthogonal matrix
Arbitrary rotations (including improper rotations)
N=3, p=3 00" =1, detO=+1

O — a special orthogonal matrix
Proper rotations

orthogonal matrices — O(3)
Groups of
special orthogonal matrices — SO(3)

17



Composition of rotations

0(3) — all rotations

Groups one-to-one correspondence to
SO(3) — proper rotations



Composition of rotations

R'=0'0' R"'=0"0"
AN e
R=0"0O'

O, O’and O ”— orthogonal matrices
R=0"0" =0"I0" =0"(0T 0")0O" =(0"0" )(O'0")=R"R’
R — Rll RI

Composition of rotations corresponds to multiplication

of representing them orthogonal matrices. 1



RII

R'=

Composition of rotations

Py

Il
Ok O
o O K

2/3 2/3
2/3 -1/3

 2/3 -1/3 2/3]

2/3 2/3 -1/3

-1/3 2/3 2/3

1 0] 2/3 -1/3 2/3]

0 0| 2/3 2/3 -1/3

0 -1|-1/3 2/3 2/3]
R:RIIRI

1/3 -2/3

0
0
-1

~1/3]
2/3
~2/3]

Composition of rotations corresponds to multiplication
of representing them orthogonal matrices.

20
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Composition of rotations — algebra of quaternions

eﬂ - basis of a 4 dimensional vector space, 1=0123 i, j,k=12,3

X= xﬂeﬂ = X€y + X6, + X,6, + X6,

Standard multiplication plus e,e,=6ee, =6
the quaternion multiplication rule H H H

x:xﬂeﬂ yzyﬂeu

Xy :(Xoyo _Xiyi) o +(X0yk + %Yo +gijkxiyj) Cx

Xy # YX

21



Qe

VS Unit quaternions and rotations
T I
} : : i, j,k=123
q# components of a unit quaternion =0123

q,d, =05 +0; +0d; +0; =1

'Aﬁj = ((qo)2 _quIk) 5ij +2Cquj _25ijquqo

A is a special orthogonal matrix

CI=[ Uo» Giy Do, q3]2[1/21 1/2,1/2, 1/2]

A=

o +— O
— O O
o O B

22



Unit quaternions and rotations

g, ¢’ — unit quaternions
O, O’ — special orthogonal matrices

q—>0 q — O

N/

qq'— OO

There is a two-to-one corespondence between
unit quaternions and special orthogonal matrices.

There is a two-to-one corespondence between unit quaternions and proper rotations.

23



Unit quaternions and rotations

Unit quaternion sphere in 4D

Qe+ +05 +0; =1

Quaternions g and —q represent the same orientations

0,(@)=((a0)? - a0l ) 5, +20,q; — 263,00 = O;(~ 1)

24



Summary

Euler theorem.

(Proper) rotations can be represented (special) orthogonal matrices.

Composition of rotations is represented by the product of orthogonal matrices.

There is two-to-one correspondence between unit quaternions
and special orthogonal matrices.

Composition of rotations is represented by the product of unit quaternions.

25
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Transformation of vector components

X a.l °aj — é‘lj and ali'a'j — é‘l_j

x=x'a, =x"a', | -a

X' = RX




Parameterizations

 Rodrigues parameters
 Axis and angle

* Rotation vector

* Euler angles

* Miller indices



Independent orientation parameters

Special orthogonal matrix — 9 parameters {

U N
© 0N

O O Ww
I —|

Unit quaternion — 4 parameters L 2 3 4]

Number of independent parameters - 3

Is it possible to have a ,,nice” global parameterization
(one-to-one, continuous, with continuous inverse),
which would map rotations into the 3 dimensional
Euclidean space?

No!

28
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Cayley transformation

O - special orthogonal matrix such that

(I +O) non-singular
R=(1+0)"(1-0)

O=(-R)(I +R)™" (I +R) non-singular

i : . 0O b -r
R - an antisymmetric 3x3 matrix . S 2
- — | — r r
3 independent parameters 3 1
L I -0 0 |

29



Cayley transformation, example

2/3 -1/3 2/3]
O=|2/3 2/3 -1/3
-1/3 2/3  2/3

[ 0 13 -1/3]| [0 r, -r,]
R=(1+0)*(1-0)=|-1/3 0 1/3 |=|-r, 0 r,
/3 -1/3 0 | |r, -r O]

r=[r, r,, ,]=[1/3, 1/3, 1/3]



Rodrigues parameters

0 h, -r, 1
R=|-r. O r — = =
r: oo I = 5 i R Ru Eii Nk

1
r=— " ¢&.0. O. =
1+0, ™K YA+

((1— ) S +2rr — Zgijkrk)

Rodrigues parameters / unit quaternion: = G

= Rodrigues space .~

Jo

r-0O r'- Q'

N/

r+r.—g.r.r
ror'—- Q00 (ror), ="' 1 “WLK
1—ﬁr|

one-to-one corespondence

31
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AXis and angle

Euler theorem —— rotation axis
magnitude of rotation — rotation angle

Or

I’ - Rodrigues vector is parallel to rotation axis

The axis is represented by vector n of unit magnitude N =1r / r

k-n=0 k
ok =1 (Ok)-k =cosw
|\
Ok
n

cosw=(0, —1)/2

32
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AXis and angle

I =tan(w/2) n, g, =sin(w/2) n,

O, (N, w) = 0; cos w+n;Nn; (1—cos w) — & N, SIN W
O(n, ) =0(—n,27 — w)

neS’ neS*
O<w<?2rx O<w<rx

27T

33



AXis and angle, example

2/3 -1/3 2/3
O=|2/3 2/3 -1/3
-1/3 2/3 2/3

r=[r, r,, ,]=[1/3, 1/3, 1/3]

)
=~ =[1//3,1/./3,1/3]=[L 11 /3
nxﬂ[f 43, 1/-/3]=[ 1 /-3
cosw=(0; —1)/2=1/2 w=r7/3=60°

(N, ) = ([ L, 1, 1, j

34



Rotation vector

(n, ) = ([ L, 1, 1], j

r =tan(w/2)-n=tan(xz /6) ( f[l 1, 1]) 11, 1, 1]

p=w-N= [1, 1, 1]

3[

Pi = f(a)) n;

35



Rotation vector

Pi = f(a)) n,

f :[0,7] > R strictly increasing,

: {Pi}E{_Pi}

parametric ball

tan(w/2)

sin(®) sin(e/2) ol
tan(w/ 4

[3/(47*))(@~sin(@))]"*

f(w)= (3 @ —Ssin 6())/(4772))1

 in degrees

— i1sochoric parameters 0



Euler angles

O =0(n,w) X-convention

O(¢., 0, 9,) =0(e,, ¢,) O(e'xl,qb) O(e", . 9,)

O(¢1’¢1 (02)20(92,(02) O(ex’¢) O(ez’¢1)

37
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Euler angles

L I ...
O(¢1’¢’ ¢2):O(ez1¢2) O(ex’¢) O(ez’¢1)

The domain of all proper rotations is covered when

0<¢p <27 0<¢<rx 0<p,<2x

¢/

@,

38
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Euler angles, example

T .
O=0(n,w)

O(¢1’¢1 ¢2):O(ez’¢2) O(ex’¢) O(ez,§01)

@, =90° ¢ =060°
(0 1 O]
O(e,,90°)=|-1 O O(e,,60°) =
0 0 1)
0 1 0][1 O 0
0(90°,60°90°) =|-1 0 0[x|0 1/2 -3/2]|x
0 0 1| |0 —/3/2 1/2

@, =90°
1 0 0 |

0 1/2 -/3/2
0 —-./3/2 1/2 |
0 1 0] |[-1/2 0 3/2
-1 0 0l=l 0 -1 0O
0o 0 1| |-/3/12 0 1/2

(o)=L 0, 31/2, 7)

39
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Euler angles

O(¢1’¢1 (02)20(92,(02) O(ex’¢) O(ez’¢1)

Singularity: O(¢,,0,9,) =0O(p, + 2,0, 0, — )
O(oy, 7, ¢,) =O(p, + &, 7, 0, + @)

Lattman angles: " = (gpl + @, )/2 @ = ((01 — P, )/2

40



Miller indices

e.g.,(110)[001]

. luvw]

hu+kv+Iw=0

€, —I-th external basis vector
a; — J-th basis vector of crystal direct lattice

Aj=¢-a B=A"

(hkl) X (Ailoi3’ A0, A30i3) [UVW] X [Blioil’ B,,O,,, BSiOil]

Cubic system (hkl) oC (013023033) [UVW] oC [011021031]

41
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Miller indices, example

Cubic system (hk|) oC (013023033) [UVW] oC [011021031]

2/3 -1/3 2/3] (hkl)oc(013023033)oc(2 12)
O=| 2/3 2/3 -1/3

-}1’3] 213 (2’?;- luvw]ec [0,,0,,05 | [2 2 1]
uvw hkl

(hkl) [uvw]|=(2 12)[2 2 1]



Summary

43



Summary

* Euler theorem: Rotation about a point is equivalent to a rotation about a line.

* There is one-to-one correspondence between object's orientations and
rotations about a fixed point.

* An orientation of an object can be represented an orthogonal matrix.

(Proper) rotations are represented (special) orthogonal matrices.

Composition of rotations corresponds to multiplication of representing
them orthogonal matrices.

* There is two-t0-one correspondence between unit quaternions
and special orthogonal matrices.

An orientation of an object can be represented a unit quaterion.

Composition of rotations corresponds to multiplication of representing
them unit quaternions.

44
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Summary
I

* There are a number of orientation parameterizations.
,,Nice” parameterizations involve more than 3 numbers.

There is a relationship between antisymmetric matrices
and special orthogonal matrices (Cayley transformation).

Cayley transformation is a good starting point for deriving
3-number rotation parameterizations.

 Axis and angle

* Euler angles
 Rodrigues parameters
» Rotation vector

« Miller indices

45
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(,, - components of a unit quaternion l,J,k=123
1=0123

q,d, =05 +0; +0d; +0; =1

O, = ((qo)2 _quk) o; +20;4; — 2&;9,,

O — special orthogonal matrix

0 =+ & Oy /(25) 0 =+ Oy /(25)
G = (1+O|| )1/2
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