

- There is one-to-one correspondence between object's orientations and rotations.
- An orientation of an object can be represented an orthogonal matrix.

(Proper) rotations are represented (special) orthogonal matrices.

Composition of rotations corresponds to multiplication of representing them orthogonal matrices.

• There is two-to-one correspondence between unit quaternions and special orthogonal matrices.

- Rotation/orientation parameterizations:
 - Axis and angle
 - Euler angles
 - Rodrigues parameters

Interdisciplinary PhD Studies in Materials Engineering with English as the language of instruction Institute of Metallurgy and Materials Science **Polish Academy of Sciences** Reymonta 25, 30-059 Krakow, tel. +48 12 295 28 00, fax +48 12 295 28 04 www.imim-phd.edu.pl Project is co-financed by European Union within European Social Fund

Description of orientations and misorientations in the presence of symmetry

A.Morawiec

Polish Academy of Sciences

Institute of Metallurgy and Materials Science

Outline

- Crystallographic point groups
- Asymmetric domains
- Misorientation angle distributions
- Misorientation axis distributions

- Symmetry operation object's configurations w/r to its environment before and after the operation are identical.
- An object is symmetric if there exists a non-trivial symmetry operation.
- Orientation analysis is influenced by objects' symmetries.
- Crystals exhibit symmetries.
- Symmetry operations of an object constitute a group.
- Point group there exists a point fixed under all symmetry operations of the group.
- Symmetry operations of a point group are rotations.

Point groups

All rotations O(3) C_{nh} C_n + reflection w/r to h C_{nv} C_n + reflection w/r to v S_{2n} $C_n + (\pi/n)$ & (reflection w/r to h) D_{nh} D_n + reflection w/r to h D_{nd} D_n + reflection w/r to d T_d T + reflection w/r to d T_h T + inversion $C_s = C_{1h}$ $C_i = S_2$ + inversion O_h () + inversion I_h

7

Crystallographic point group = a point group of a lattice

Crystallographic point groups have finite orders.

In 3D there are 32 (geometric classes) of crystallographic point groups.

Crystal systems

Monoclinic			Trigonal		Hexagonal	
Triclinic	Or	thorhombi	c T	etragonal		Cubic
C_{i}	$C_{_{2h}}$	D_{2h}	D_{3d}	D_{4h}	D_{6h}	O_h
C_1	C_2	D_2	D_3	D_4	D_6	0
		$C_{_{2v}}$	$C_{_{3v}}$	C_{4v}	$C_{_{6v}}$	
	C_{s}			D_{2d}	D_{3h}	T_d
			S_6	C_{4h}	$C_{_{6h}}$	T_h
			C_3	C_4	C_6	T
				S_4	$C_{_{3h}}$	

Asymmetric domains

$$\varphi \rightarrow \varphi + k \cdot 90^{\circ}$$

Asymmetric domain – the smallest closed subset of the orientation space such that symmetrical images of the domain cover the space

Asymmetric domains

Asymmetric domain – the smallest closed subset of the orientation space such that symmetrical images of the domain cover the space

Asymmetric domains Euler angles

Asymmetric domains Euler angles

Ľ			_
	_	_	_
_	_	_	_
_	-	_	_
-	_	-	-
$- \varphi_2 = 0$	$- \varphi_2 = 5$	$- \omega_{2} = 10$	$-\omega_{0}=15$
	- +2 -	$\varphi_2 = \varphi_2$	φ_2 is
-	-	_	_
Γ			
	_	_	_
-	–		-
$- \phi_2 = 20$	$- \omega_0 = 25$	$- \omega_{2} = 30$	$- \omega = 35$
- '2	- 42 -0	- 72	$- \qquad \qquad$
-	_	-	-
-		_	_
-	-	_	-
	-	_	-
E			
-40	- (0 - 15)	- <u> </u>	55
$\psi_2 = 40$	$- \psi_2 - 4J$	$- \psi_2 - 50$	$- \psi_2 = 55$
-	-	-	-
-	-	-	-
-	_	-	_
-	-	-	-
F	-	-	-
$\Box \qquad \varphi_2 = 60$	$\varphi_2 = 65$	$\varphi_2 = 70$	$\varphi_2 = /5$
<u>-</u>			_
F	_	L	
–	—	-	<i>O</i> .
–	-	-	Ψ_1
–	-	-	
-	-	-	b d
$\vdash \varphi_2 = 80$	$\varphi_2 = 85$	$- \varphi_2 = 90$	♦ <i>Y</i>

Example experimental ODF

Orientation density function of FeSi after primary recrystalization

 φ_1 projection

Example experimental ODF

Orientation density function of extruded Ti- α (Grade 2)

Texture Name: New Texture raw Calculation Method: Harmonic Series Expansion Series Rank (I): 34 Gaussian Smoothing: 5.0ş Sample Symmetry: Triclinic Representation: Euler Angles (Bunge)

Constant Angle: φ1

 φ_1 projection

19

Cubic crystal symmetry

Simultaneous permatations in (...) and [...].

Even permatation add even number of '-'.

Odd permatation add odd number of '-'.

- (123)[63-4] (-321)[436]
- (2-13)[3-6-4] (-3-12)[4-63]
- (231)[3-46] (2-3-1)[34-6]
- (-1-23)[-6-3-4] (13-2)[6-4-3]
- (3-21)[-4-36] (-31-2)[46-3]
- (-1 3 2)[-6-4 3] (3-1-2)[-4-6-3]
- (312)[-463] (-3-2-1)[4-3-6]
- (-2 1 3)[-3 6-4] (-1 -3 -2)[-6 4-3]
- (-2-31)[-346] (21-3)[364]
- (1-32)[643] (-12-3)[-634]
- (-2 3-1)[-3-4-6] (1-2-3)[6-34]
- (32-1)[-43-6] (-2-1-3)[-3-64]

Cubic - orthorhombic symmetry

Resides equivalences of	(1
	(1
cubic crystal symmetry:	(1

< 24

all simultaneous permatations in (...) and [...] + all sign changes not violating hu+kv+lw=0

It is common to omit bars, e.g., (123)[634]

This does not make sense when orientations of individual crystallites are considered.

components

Rodrigues parameters and orientations at the same distance to two distinguished orientations

Asymmetric domains, example texture

Extruded Ti- α

D_6

Texture Name: New Texture raw Calculation Method: Harmonic Series Expansion Series Rank (I): 34 Gaussian Smoothing: 5.0ş Sample Symmetry: Triclinic Representation: Rodrigues Vector

2. There are common symmetry operations Voronoï cell around I = 'large cell' \oplus asymmetric domain There are equivalent points within the large cell.

Asymmetric domains Rodrigues space

Asymmetric domains Rodrigues space

Asymmetric domains

Previous considerations: proper rotations and proper symmetry operations

Standard approach in textures: enatiomorphic crystals – different phases

[2 1 0], 131.81deg = [1 1 1], 60.00deg

Mis(dis)orientation –you must be disoriented

Disorientation angle - the smallest of angles of all rotations leading from one orientation to the other

Question: what is the frequency of occurence of these smallest angles when the crystalites are randomly distributed?

Reference distribution

The frequency of occurence of misorientation angles is related to the area of the surface ω =const in the asymmetric domain (based on the smallest angles)

invariant volume (density of random orientations) + shape of the large cell

misorientation angle distribution

Cyclic symmetries

Dihedral symmetries

Axis corresponding to the smallest of angles of all rotations leading from one orientation to the other.

Question: what is the frequency of occurence of these these axes when the crystalites are randomly distributed?

Reference distribution

The cubic case – Mackenzie, 1964

 r_1

In the Rodrigues space, the distance of the planes bounding the asymmetric domain is related to the frequency of occurence of misorientation axes.

invariant volume (density of random orientations) + shape of the large cell

misorientation axis distribution

Misorientation axis distributions

$$a - C_3$$
$$b - D_3$$
$$c - T$$
$$d - O$$
$$e - Y$$

CSL misorientations

Coincident lattices

G.Friedel, (1926).

Kronberg, M. L. and F. H. Wilson (1949), *Trans. Met. Soc. AIME*, **185**, 501 (1947).

Coincident Site Lattice

 Σ - reciprocal of the fraction of overlapping lattice nodes.

CSL misorientations

cub				hcp			
	Σ	Angle	Axis		Σ	Angle	Miller indices of axis
	1	0.0000		,	7	21.7868	<0.0.1>
	3	60.0000	<111>		10	78.4630	<2 1 0>
	5	36.8699	<100>		11	62.9643	<2 1 0>
,	7	38.2132	<111>		13	27.7958	<0 0 1>
(9	38.9424	<110>		14	44.4153	<2 1 0>
	11	50.4788	<110>		17	86.6277	<1 0 0>
	13a	22.6199	<100>		18	70.5288	<1 0 0>
	13b	27.7958	<111>		19	13.1736	<0.0.1>
	15	48.1897	<210>	/	22	50.4788	<1 0 0>
	17a	28.0725	<100>	/	25	23.0739	<2 1 0>
	17b	61.9275	<221>	/	26	87.7958	<8 0 1>
	19a	26.5254	<110>	/	27	38.9424	<1 0 0>
	19b	46.8264	<111>	/	29	66.6372	<16 0 3>
	21a	21.7868	<111>		31a	17.8966	<0 0 1>
,	21b	44.4153	<211>	,	31b	56.7436	<5 1 0>
	23	40.4591	<311>		34	53.9681	<4 0 1>
	25a	16.2602	<100>		35a	34.0477	<2 1 0>
	25b	51.6839	<331>		35b	57.1217	<2 1 0>
,	27a	31.5863	<110>		37a	9.4300	<0 0 1>
,	27b	35.4309	<210>		37b	72.7047	<7 2 0> 45

CSL misorientations and ORs

Summary

Orientation analysis is influenced by symmetries of objects

Crystal symmetry and statistical sample symmetry

Asymmetric domains:

Euler angles – nice for low symmetries Rodrigues parameterization – Voronoï tessellation

Reference misorientation angle/axis distributions

Interdisciplinary PhD Studies in Materials Engineering with English as the language of instruction Institute of Metallurgy and Materials Science Polish Academy of Sciences Reymonta 25, 30-059 Krakow, tel. +48 12 295 28 00, fax +48 12 295 28 04 www.imim-phd.edu.pl Project is co-financed by European Union within European Social Fund