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NATURAL VIBRATIONS OF LONG VIBRATORY CONVEYERS

DRGANIA WEASNE DEUGICH PRZENOSNIKOW WIBRACYJNYCH

Analysis of natural vibrations of vibratory conveyers troughs supported by a leaf spring system on a vibroinsulated
frame, utilised in metallurgical industry, is presented in the paper. The analysis of vibrations was done by decomposing
the system and separating the solution of the problem in terms of two separate analyses. The first analysis for the system
El, and EI, — oo, causes discretisation of the system and allows to determine its first four natural frequencies. The second
one is the analysis of the continuous system: body — frame — frame supporting system, which allows to find the remaining
natural frequencies.

The methodology of an analytical estimation of natural frequencies of conveyers supported on vibroinsulating frames is
given in the paper. In order to verify the correctness of analytical equations the vibration frequencies of the conveyer with
typical parameters were determined and then compared with the results obtained in computer simulation by the Finite Element
Method. It has been proved that the mathematical model provides the correct results for transverse vibration of the system at
frequencies up to 100[Hz]. Above this frequency the influence of axial deflections of leaf springs is clearly visible.

W pracy przedstawiono analizg drgafi wiasnych rynien przenosnikéw wibracyjnych stosowanych w przemysle hutniczym
podpartych przy pomocy ukladu listew resorujacych na wibroizolowanej ramie. Analize drgari dokonano przez dekompozycje
ukladu i rozdzielenie zagadnienia na analizg uktadu dla El, i EI, —> oo, co prowadzi do dyskretyzacji ukiadu i pozwala na
wyznaczenie czterech pierwszych czgstosci wlasnych ukladu i na analize ukladu ciaglego: korpus — rama — uktad podparcia
ramy, co prowadzi do znalezienia pozostalych czesto$ci wiasnych.

Praca przedstawia metodologi¢ analitycznego wyznaczenia czgstosci drgari wlasnych przenosnikéw podpartych na wibro-
izolowanej ramie. W celu sprawdzenia poprawnosci réwnar analitycznych wyznaczono czesto$ci drgari przeno$nika o typowych
parametrach i poréwnano je z wynikami uzyskanymi na drodze symulacji komputerowej metoda elementéw skoriczonych.
Wykazano ze model matematyczny daje poprawne wyniki dla czgstotliwoéci drgari gietnych ukladu do 100[Hz], powyzej tej
czestotliwosci zaznacza si¢ wyraZnie wplyw ugiecia poosiowego listew resorujacych.

1. Introduction one of the main constructional problems of the convey-

ers of several meter lengths, at an average operational

Vibratory conveyers are utilised in metallurgical in-
dustry for continuous transport — usually at short dis-
tances up to 20m — of hot materials (furnace slag, small
steel elements etc.), caustic substances or substances
emitting gases hazardous for an environment. In addi-
tion, vibratory conveyers enable cooling of feeds, recov-
ery of heat from the transported materials (used later e.g.
for warming furnace blowers), drying, humidifying etc.
Furthermore they allow transporting in closed conduits.

Free vibrations of troughs of the vibratory convey-
ers, revealing themselves as double-sided bending of
those troughs in the plane of symmetry of the conveyer,
disturb the transporting process and therefore constitute

.

frequency being in the range of 13 to 50 Hz [1]. Knowl-
edge of the basic frequencies of natural vibrations allows
to reconstruct the system in such a way that the forced
frequency of the vibrator will not occur in the vicinity
of any natural frequency.

This problem, analysed in detail [2] for short and
medium length conveyers supported on elements with
omni-directional compliance (coil springs, rubber vi-
broinsulators), was not — until recently — discussed suf-
ficiently in relation to long conveyers supported usually
on a system of parallel steel leaf springs.

Connection of troughs with the stiff foundation by
means of a system of leaf springs stiffens troughs but
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does not completely protect against transverse vibrations
[3]. Moreover, cause transferring of large dynamic loads
on the foundation — in the spring axial direction [4].
Due to this feature, long conveyers are often supported
on heavy frames vibroinsulated from the foundation. In
such case the trough co-operates in bending with the
frame creating jointly the system presented in Fig. 1.
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Fig. 1. Model of the conveyer with the vibroinsulating frame

As it will be shown in the further part of the paper,
the analysis of vibrations for this type of construction
— for the typical parameter values — can be done by
decomposing the system and dividing the problem into:

a) Analysis of the system for EI}, and EI, — oo, which
leads to discretising of the system and allows deter-
mining its first four natural vibrations.

b) Analysis of the continuous system: trough — frame
— system of frame support, which allows finding the
remaining natural vibrations.

2. Determination of the first four natural
frequencies for the system: trough-vibroinsulating
frame. Analysis of the discrete system.

Let’s consider the system presented in Fig. 1 as a
system of solids: trough -- frame, connected mutually and
with the foundation by elastic elements with constants k,
kx, ky.

The Lagrangian Function of the system takes a following
form:

2

1 . .
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where:

x, y — Co-ordinates of the mass centre of the trough
together with the vibrator,

B — Angle of rotation of the trough,

s~ Spring deflection, measured as in Fig. 1,

f  — Auxiliary co-ordinate, as in Fig. 1,

m,, -~ Mass of the trough,

m,,, — Total mass of the vibrator,

Jw ~ Total mass moment of inertia of the trough with
the vibrator versus the mass centre of m, + m,,.

mp, ~ Mass of the vibroinsulating frame,

J» — Mass moment of inertia of the vibroinsulating
frame versus the mass centre of my,

k - Stiffness coefficient of leaf springs in direction
s for the unit of length of the trough,

k, - Stiffness coefficient of coil springs in direction
x for the unit of length of the trough,

k, ~ Stiffness coefficient of coil springs in direction

y for the unit of length of the trough.

Remaining parameters, as in Fig. 1.
The equations of motion for this system are as follows:

[ 'm, +m, +my, 0 my - H my - cosa x
0 m, +m,, +my 0 my - sina y
my - H 0 Jow+Jp+mp -H? my-H-cosa B .
my - cos @ my, - sinq my-H - -cosa mp § )
i 0 EIGH + 1) PR . .
0 kyl 0 kylsin @ Yoo
kyl (H + h) 0 BPly/12 + kI(H? + K + 2hH) kylcosa(H + h) B ;
kidcosa  kylsina kylcosa(H + h) I(ky sin’ @ + k, cos? @ + k) s
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Expecting the solution as: tions is obtained with amplitudes a, b, ¢ and d as un-
known values. Due to the physical meaning of ampli-
tudes this system should have a non-zero solution. The
condition necessary for obtaining non-zero solutions of
a homogeneous set of equations is that the determinant
— formed of coefficients at unknowns — equals zero. In
consequence, we obtain equations (4) for the natural fre-

quencies from w; to wy.

x = acos(wt — i)

y = bcos(wt — ¢)

B = ccos(wt — ¥)

s=dcos(wt — ) ¢ = const
and substituting functions (3) and their derivatives into
equations of motion (2) the set of homogeneous equa-

3

In order to verify the correctness of the given above
calculations and to compare the obtained results with
the simulation results, the first four natural frequencies

my, = 9596 [kg]
m, = 2256 [kg]

m,, = 850 [kg]

H = 0,3784[m) x
h = 0[m] =%
I = 16[m]

Substituting the above parameters into the expanded
determinant (4) we obtain the frequency equation as:

0,95754 - w® — 0,10782 - 10°w® + 0,34202 - 10° 4—(6)
-0,428 - 10802 + 0, 18804 - 10'° = 0,

The graphical interpretation of equation (6) is pre-
sented in Fig. 2:
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Fig. 2. Graphical interpretation of equation (6)

Equation (6) has four positive roots, out of which
three are within the range from w = 10 to w = 14.

—w?(m, + my, + mp)+ i —w?(mpH)+ —w*(my, cos )+
+kyl +h, L (H + h) +hkelcosa
0 —ci)z(m, +my, + mp)+ 0 —11)2(mb sin @)+
+kyl +kylsin _
—w?(my - H)+ A (I + Jp + my - H)+ —-w?(my - H-cosa)+ | O
+k I (H + h) +Pky/12 + kd(H? + h® + 2hH)  +k lcosa(H + h)
—w?*(my, - cos )+ —w*(my, - sina)+ —w?(my, - H - cos @)+ —w’my, + Uk, sin® o+
+kylcosa +hkylsina +kylcosa(H + h) +k, cos® a + ky)
4)

for typical parameters of the vibratory conveyer were
determined for machine parameters:

_ N
n = 112490[—2]

Jrw = 48128 [kg - m’] m
Jp = 204714[kg-m?] [, = 112490[%]
m

&)

k = 95734 [ﬁz]
m

The natural frequencies f; = 5%, obtained from solving
equation (6) are as follows:

fi = 1.81[Hz]
£> = 1.89[Hz]
f; = 1.97[Hz]
fi = 4.17[Hz].

3. Determination of the natural frequencies for the
system: trough-vibroinsulating frame. Analysis of
the continuous system.

Utilising the stability of the deformed form of the
system (Fig. 1) for s = 0 and 0 < @ < x/2, the sub-
stitute scheme for the symmetric vibrations — as shown
in Fig. 3 — was assumed. In this scheme the system:
trough — frame constitutes a beam with mass m, where

@)

m=
m
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EI =EI, + EI ®)
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Fig. 3. Substitute scheme for symmetric vibrations

The presented above scheme remains the proper one
as long as the axial compliance of springs interconnect-
ing the trough with the frame can be omitted. This as-
sumption is the right one for the first few forms of vi-
brations — as the analysis performed by the Geometric
Element Method showed.

The equation of natural vibrations of the system pre-
sented in Fig. 3 is given below:

gty _d%
EI— +
T ©
This equation should be supplemented with the
boundary conditions for the symmetric forms of vibra-
tions:

+kyy 0.

63 2
a) 330.0 =0, b) =

ay(l \_ 1 d% (1 3y (1
C)a(z,t)—(), d)2mw'a—;(2 ) Ea3 ,11.

Looking for solution of natural frequencies formu-
lated as:

(0, 1)=0

(10)

y(x, 1) = f2(x) - fi (@), (11)
we obtain the set of equations:
fO-2f=0 (12)
Denoting
k,\ EI
. 2 )=
Wn (,l + EI) = (4

Solutions of those equations can be written as:

fx = Cysin(Ax) + C; cos(Ax)+

+ C3 sinh(Ax) + C4 cosh(Ax) 1s)
fr = Dy sin(wt) + D; cos(wt) (16)
=A- 1 an

a= 7

After substituting those functions into the boundary con-
ditions (a) and (b) we obtain for m,, # 0:

Cl = C3, C2 = C4. (18)

While the remaining conditions conduce to the matrix
equation:

aj(@) axa) || G,
=0, 19
[ az(@) aq(@) H G ] i
where:
a; = cos(a) + cosh(a)
a, = sinh(a) - sin(a)
as = %':_‘: ( 41176 + k—) (sin(a@) + sinh(a)) +
+a’ § (—_cos(a) + cosh(a)) 20)
as = %r:;;” ( 4 116 + %I-) (cos(a) + cosh(a)) +
+a3l—3 (sin(e) + sinh(a))
a= Aé.

The condition for obtaining the non-zero solution of
equation (19) is:

det[ ai(@) ae) l o

az(@) as(@)

After the expansion this determinant assumes the form

2h

1
2mAET
+ 32myEI a*cosacosha +

(16m,,a*El cos® a +

+ mwkl4 cos’a + 2m, kl* cos @ cosha +

+32mlEla’ cosasinha + 16m,Ela’ cosh’a + (27)
+ mykl* cosh? @ + 32m IEJa’ sin @ cosha —

— 16m,,EIce®* sinh® @ — m,.kil* sinh? @ +

+ 16m,,0*EI sin’ o +

+ mykl*sin? @) = 0.



which leads to the transcendental equation in relation
to @. Values w;, w; ... wy, and natural frequencies f;,
f, ... fa, given by equation (14) correspond to succes-
sive roots of the transcendental equation a;, a; ... a,.
Due to the reasons discussed in the introduction,
the high accuracy can be obtained usually for the
first four natural frequencies of the continuous system:
frame — trough. Forms of natural vibrations correspond-
ing to the successive frequencies can be determined
by e.g. calculating the ratio C,/C, from equation (19).
Taking into account that C; = C3 and C, = C,
we obtain:

cos(ay,) + cosh(a,)

Cy =C1— -
2 ! sin(a,) — sinh(a,) 23)
Cu=C cos(a,) + cosh(a,)
4= “Vsin(e,) - sinh(ay)
Those dependencies, after including that:
a= 2 24)

determine the natural vibration of the transverse form
with the accuracy to the constant.

In order to compare the results of the introduced
above considerations with the results obtained by the
computer simulation applying the Geometric Elements
Method the first few natural frequencies of the system
were determined — for the typical parameters of the vi-
bratory conveyer:

Ao 9596 + 2856
Tl 16

EI = El, + EI, = 841705 - 10'°[Nm?]

=778.25 [k_g]
m

- N
k, = 112490[?]'

The remaining parameters are given in equation (5).
Substituting those values to equation (22) we obtain:

0.0266 - a* cosacosha +0.1459 - cos @ cosh o +
+ 0.3906 - o> cos a sinh @ + 0.3906 - o> sin @ cosh +

+ 0.02660* +0.1459 = 0
(25)

Successive roots of this equation correspond to the re-
spective natural frequencies (on the basis of equation
(14)). Thus, the successive natural frequencies of the
continuous system, where:
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fi = 5%, are as follows:

fi = 4.74 [Hz)
f> = 23.5 [Hz]
f3 = 57.5 [Hz]

fa = 108.2 [Hz]
fs = 174.5 [Hz].

Those frequencies correspond to the transverse sym-
metric vibration forms. Since vibrations of anti- symmet-
ric form will not be excited in typical systems: trough-
frame, with the drive in the middle of the trough, their
determination seems not necessary.

4. Determination of the frequency and form of
natural vibrations by the computer simulation
utilising the Geometric Element Method.

To verify the correctness of analytical calculation the
natural frequencies of the system: trough-vibroinsulating
frame (presented in Fig. 1.), were determined by the Fi-
nite Element Method (Geometric) with an application of
the software package Pro/Mechanica.

A sector of the simulated model is presented in
Fig. 4. Leaf springs are modelled by two coil springs,
one of which is of a small stiffness in the vibration
direction while the second is of much higher stiffness
in the axial direction of the spring. Such modelling de-
creases the time of numerical calculations increasing si-
multaneously their accuracy. This happens due to assign-
ing one equation to each spring in the model.

Fig. 4. Simulated system

Graphs in Figures 5 to 15 present successive
forms of vibrations of the system: trough-vibroinsulating
frame as well as the corresponding natural frequencies.
The solid line shows the input state of the system, while
the broken line illustrates the deformation of the system
corresponding to the successive forms of natural vibra-
tions.
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Displecement Heg
Deformed Originel Model
Mex Disp +1.0000E¢00
Scele 1.42062400

Mode 1, +1.7189%+00

“windowi® - snliysé - snlysé

Fig. 5. Vibrations of the whole system in x-x direction. f; = 1.718{Hz]

Displucsment Mag
Detormed Original. Model
Max Disp +1.00003+00
Scele 1.42068+00
Wode 2, +1.82403:00

*window2® - anlysé - anlysé

Fig. 6. Vibrations of the whole system in y-y direction. f, = 1.824[Hz]

Displacement Meg
Detormed Original Modei
Max Disp +1.0000E+00
Scele 1.42062¢00

Mode 3, +2.06248¢00

“uindewld® - enlyst - enlyeé

Fig. 7. Rotational vibrations 8 of the whole system, f; = 2.062{Hz]
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bieplacemant Mag
Detormed Ociginel Model
Max Disp +1.0000%+00
Zoale 1.4206K+00

Mode 4, 43.93568+00

“windowd” - anlysé - snlysé

Fig. 8. Vibrations of the trough of the conveyer in relation to the vibrations of the vibroinsulating frame — in the direction of operation: s-s.
Ja = 3.933[Hz}

Displecement Meg
Detormed Original Model
Max Disp +2.0000£400
Scals 1.42062+00

Mode S, +4.96378+00

“windou5” - enlysé - snlysé

Fig. 9. The first form of symmetric transverse vibrations of the system: trough-frame. fs = 4.96[Hz]

Displscemant Mag
Detormed Origimal Moded
Max Disp +1.00008+00
Scale 1.42062+00

Node 6, +1.2874B+00

“windowé* - snlysé - anlysé

Fig. 10. The first form of anti-symmetric transverse vibrations of the system: trough-frame. Jfe = 12.87[Hz].
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Displecement Mag
Deformed Original Model |
Max Bisp +1.0CO0R+E0 i
Saale  L.42088-00

Modw €, SL.ZDTHRHOL

“windowd” - anlysé - snlysd

Fig. 11. The second form of symmetric transverse vibrations of the system: trough-frame. f; = 24.3[Hz].

Displacemsnt Meg
Deformed Ozigiosl Model
Max Disp +1.0000E+00
Scale L1.42068+00

Mods B, +4.033EH0L

"windowi® - anlysé - anlyeé

Fig. 12. The second form of anti-symmetric transverse vibrations of the system: trough-frame. fy = 40.3[Hz].

Pisplacement Meg
Betormed Origimal Wadal
Max Diep  +1.00008+00
Scale  1.4Z06E+00

Hoda 9, +£.0504E-0L

“window?$” - snlysé - salysé

Fig. 13. The third form of symmetric transverse vibrations of the system: trough-frame. fy = 60.5[Hz].
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Displecment Meg
Paformad Criginal Model
Max Disp +1.0000me0D
Seals  L.A206E+00

Mode 10, +0.28238+01

"wirdeuil® - snlysé = anlysd

Fig. 14. The third form of anti-symmetric transverse vibrations of the system: trough-frame. fi, = 82.8[Hz].

i
Displacement Wag
Dotermed Origisal Modal
Max Dlep +1.0000R+00
Scale  1.42068+00

Mode 11, +1.1275Re02

“windowull® - anlysé - snlysé

Fig. 15. The fourth form of symmetric transverse vibrations of the system: trough-frame. f, = 112.2[Hz].

It can be assumed with the sufficient accuracy that
the first four graphs (Fig. 5-8) present vibration forms re-
lated to deflections of leaf springs and springs while the
next graphs (Fig. 9-15) illustrate transverse vibrations
of the system. We must realise that this does not mean
that the first forms of vibrations are always related to
deflection of leaf springs. At adequately selected param-
eters the frequency of transverse vibrations can be lower
than the frequency of vibrations related to deflection of
springs, however, this situation does not interfere with
the possibility of applying the proposed hereby method.
As has been proved and shown in the graphs the axial

compliance of the leaf springs can be omitted for the
first 8 forms of transverse vibrations of the system — for
the typical parameter values of the vibratory conveyer.
The forms of vibrations at higher frequencies are related
to axial deflections of leaf springs. However, when the
trough is supported on rocking levers and springs in-
stead of leaf springs, the axial deflection of the element
connecting the trough with the frame can be omitted for
the higher frequencies too.

Natural frequencies of the system determined by the
simulation and analytical methods are tabulated, respec-
tively in the table below:
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TABLE
Simulating Analytic Form of vibrations

fi[Hz] 1.72 1.81 Vibrations of the whole system in x-x direction.

Jf2[Hz] 1.82 1.89 Vibrations of the whole system in y-y direction.

f3[Hz}] 2.06 1.97 Rotational vibrations 8 of the whole system.

Jfa[Hz] 3.93 4.17 Vibrations of the trough of the conveyer in relation to the vibrations of the vibroinsulating
frame — in the direction of operation: s-s.

fs[Hz] 4.96 4.74 The first form of symmetric transverse vibrations of the system: trough- vibroinsulating
frame.

Je[Hz] 12.87 Not determined | The first form of anti-symmetric transverse vibrations of the system: trough- vibroinsu-
lating frame.

Jfr[Hz] 243 23.5 The second form of symmetric transverse vibrations of the system: trough- vibroinsulating

. frame.

Sfs[Hz} 40.3 Not determined | The second form of anti-symmetric transverse vibrations of the system: trough- vibroin-
sulating frame.

JSo[Hz] 60.5 58.5 The third form of symmetric transverse vibrations of the system: trough- vibroinsulating
frame.

Jio[Hz} 82.8 Not determined | The third form of anti-symmetric transverse vibrations of the system: trough- vibroinsu-
lating frame.

Ju[Hz] 112 108 The fourth form of symmetric transverse vibrations of the system: trough- vibroinsulating
frame.

5. Conclusions

On the basis of the comparison of the results ob-
tained by the analytical and the Finite Element Method
— in the range of natural frequencies of the vibratory
conveyers — the following conclusions can be offered:
1. There is the possibility of decomposing the system
into two separate models:

— Discrete model for the determination of the first,
most often the lowest, natural frequencies resulting
mainly from deformations of elastic elements of the
conveyer.

— Continuous model of the beam type (composed of
the summation of masses and transverse stiffness of
trough and frame) supported on elastic foundation,
without the possibility of rotation — for frequencies
at which transverse compliance of the conveyer is
significant.

2. The natural frequencies obtained for these partial

models are corresponding, with the high accuracy, to

the results of the computer analysis performed by means
of the Finite Element Method.

3. The models presented in the paper do not comprise

higher forms of transverse vibrations (of frequency above

100 Hz), at which the influence of axial deflection of leaf

springs is quite significant.

Received: 10 March 2005.

4. The analytical method of the determination of the
transverse vibration frequency of anti-symmetric system
is not given in the paper. This form of vibration, in the
case of conveyers having construction similar to the one
hereby discussed, is not excited and the resonance related
to it is not very dangerous.
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