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METODA NUMERYCZNA ROZWIAZANIA WIELOFAZOWEGO ODWROTNEGO PROJEKTOWEGO ZAGADNIENIA STEFANA

The inverse problems for differential equations consist of stating the initial conditions, boundary conditions or thermo-
physical properties of the body. But the insufficiency of input information is compensated by some additional information on
the effects of the input conditions. Generally, for the inverse Stefan problem, it is assumed that this additional information is
the position of the freezing front, its velocity in normal direction or temperature in selected points of the domain. We may
consider the usage of the demanded position of the moving front as the constraint for the cost functional. This kind of problem
becomes an inverse design problem.

In the paper, the multi-phase inverse Stefan design problems are formulated and described by means of the optimization
method. These problems consist of the reconstruction of the function which describes the heat-transfer coefficient, when the
positions of the moving interfaces of the phase change are well-known. The method consists of the minimization of a functional,
the value of which is the norm of a difference between given position of the moving interface of the phase change and a position
reconstructed from the selected function describing the heat-transfer coefficient. In numerical calculations the Nelder-Mead
optimization method and the generalized alternating phase truncation method were used.

Keywords: Inverse Stefan Design Problems, Solidification, Generalized Alternating Phase Truncation Method, Nelder-Mead
Method.

Modele matematyczne szeregu istotnych zjawisk spotykanych w praktyce prowadza do réznych typéw Zle uwarunkowa-
nych zagadniefi odwrotnych dla réwnaii fizyki matematycznej, a w szczeg6lnosci do niepoprawnie postawionych zagadnieri dla
réwnania przewodnictwa ciepta. Na og6t zagadnienia te pojawiaja si¢ przy prébach odtworzenia przebiegu jakiego$ procesu
opisanego zagadnieniem poprawnie postawionym, na podstawie wynikéw pomiaréw, ktére powinny jednoznacznie okresli¢
rozwigzanie, ale nie czynia tego w sposéb poprawny. Zagadnienia odwrotne dla réwnar fizyki matematycznej polegaja na
okresleniu np. warunku poczatkowego, warunkéw brzegowych lub parametréw materiatu. Brak pewnej cze$ci informacji wej-
Sciowej, jest uzupeiniany dodatkowymi informacjami o konsekwencjach wyniklych z warunkéw wejéciowych. Dla odwrotnego
zagadnienia Stefana dodatkows informacja jest znajomos$¢ potozenia granicy rozdziatu faz, jej predkosci w kierunku normalnym
lub temperatury w wybranych punktach obszaru. W przypadku, gdy do budowy funkcji celu wykorzystamy zadane polozenie
granicy rozdziatu faz, to tego typu zadanie nosi nazw¢ odwrotnego zagadnienia projektowego.

W pracy bedziemy rozwaza¢ wielofazowe odwrotne projektowe zagadnienie Stefana, w ktérych dodatkows informacja s
polozenia granic rozdziatu faz. W opisywanej metodzie dobierana bedzie warto§¢ (zmiennego w czasie) wspétczynnika wnikania
ciepla, tak aby zminimalizowa¢ funkcjonat, ktérego wartoscia jest norma réznicy miedzy zadanym potozeniem granicy rozdziatu
faz i polozeniem odtworzonym dla wybranego wspéiczynnika wnikania ciepta. W obliczeniach numerycznych wykorzystano
metod¢ optymalizacji Neldera-Meada oraz uog6lniona metode przemiennej fazy.

1. Introduction of the freezing front, its velocity in normal direction or

temperature in selected points of the domain. We may

The inverse problems for differential equations con-
sist of stating the initial conditions, boundary conditions
or thermophysical properties of the body. But the insuf-
ficiency of input information is compensated by some
additional information on the effects of the input con-
ditions. Generally, for the inverse Stefan problem, it is
assumed that this additional information is the position

*

consider the usage of the demanded position of the mov-
ing front as the constraint for the cost functional. This
kind of problem becomes an inverse design problem.
Most of the papers concerning this field are focused
on the one-phase one-dimensional inverse Stefan prob-
lems. Papers devoted to two-dimensional problems are
not that numerous, part of them have little importance
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for applications, as regards a way of solution [1, 2, 5,
7, 22]. Most published materials involve the reconstruc-
tion of temperature or heat flux on the boundary of a
domain [2, 3, 28-31]. In paper [27] the distribution of
the inner heat sources in a domain is reconstructed. The
inverse Stefan problems, where the thermal properties of
materials (e.g. thermal conductivity, thermal diffusivity,
coefficient of convective heat-transfer etc.) are recon-
structed, are discussed in papers [22-25]. Unfortunately,
all these papers pertain to semiinfinite domains, but the
two-phase problem is considered only in paper [22].

In papers [1, 2, 10, 26] the regularization of inverse
Stefan problems and the system of linear Volterra inte-
gral equations obtained is turned into a linear Volterra
equation of the second kind associated with an equa-
tion of the convolution type. In paper [7] the solution is
found in terms of an infinite series of one-dimensional
integrals. Jochum [16] considers the inverse Stefan prob-
lem as a problem of nonlinear approximation theory (see
[14, 15]). In papers [8, 9] for solutions of one-phase
two-dimensional problems the authors used a complete
family of solutions of the heat equation to minimize
the maximal defect in the initial-boundary data. Sim-
ilar method was used for one- and two-dimensional
two-phase inverse Stefan problems in [11-13]. In this
method, the solution is found in a linear combination
form of the functions satisfying the equation of heat
conduction. The coefficients of this combination are de-
termined by the least square method for the boundary of
a domain. In papers [4, 17, 32, 33] the authors used
dynamic programming or minimization techniques in
finite- and infinite dimensional space. Unfortunately, the
majority of these papers pertain to the one-phase prob-
lems, the two-phase problems are considered only in pa-
pers [2, 12, 13, 17, 32, 33].

In this paper, a mthod for the reconstruction of the
function which describes the heat-transfer coefficient is
discussed, when the position of the moving interface of
the phase change is well-known. The method consists
of the minimization of a functional, the value of which
is the norm of a difference between given position of
the moving interface of the phase change and a position
reconstructed from the selected function describing the
heat-transfer coefficient. In numerical calculations the
Nelder-Mead optimization method [6, 20] and the gener-
alized alternating phase truncation method [18, 21] were
used.

2. Formulation of the problem

Let Q = (a,b) Cc R. On the boundary of a domain
D = Q x (0,t*) three components are distributed:

I'o={(x,0);x €[a,b]}, 1)
T ={(a,0);t€[0,2%]}, 2
L ={b,1;te0,r]}, 3)

where initial and boundary conditions are given. Let
Dy (k = 1,...,n) be this subset of domain D which
is occupied by k phase. Domains D; and Dy, are sep-
arated by the moving interface I'yr+1 (X = &xxe1 (7)),
k=1,...,n—1. We will look for an approximate solu-
tion of the following problem:

For given positions of moving interfaces I'gzs1,
the distribution of temperature T; in domain Dy
(k = 1,...,n) is calculated, as well as function a(¥)
on boundary I';, which satisfies the following equations
(fork=1,...,n)

Gt (6, 0) = x1 2 (Ax' G2 (x,0), in Dpy (@)
T1(x,0) = ¢o(x), on I, ()
_/Ik%l;& (as t) = 07 on rl, (6)
—ﬂk% b,)=a@)Tk(b,t)-Ts), on Iy, (7)
Te (e, =T;_y;, on Dioyg, ®
Tk (x9 t) = T;,k+l’ on rk,k+ls (9)

d @) oTy (x,t

Ly k+1Pk+1 —fk';l = —A —-—'—’;.j( )
t X Y] (10)
0Ty (x,1)
+ ka1 o ,
X Tiis1

where [ = 0 for one-dimensional problems and / = 1 for
axisymmetrical problems, c; are the specific heat in k
phase, p; are mass density, 4, thermal conductivity, @
heat-transfer coefficient, T}, ,, temperature of the phase
change, T., ambient temperature, L;,; latent heat of
fusion between k and k + 1 phase.

Let’s assume that functions £, ., describing the ex-
act position of the moving interfaces are well-known.
Function « is designated in the form:
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a for t € (ta,, a,],
a(t) = (11)
an-1 for t € (tay 5o tay,)s
| an for t € (tg_,2%).
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Fig. 1. Domain of the multi-phase problem

Let V, denote the set of all functions in form (11),
where a; € R. In real processes function a () describ-
ing the heat-transfer coefficient doesn’t have an arbitrary
value. Therefore, the problem of minimization with con-
straints has some practical application. Assuming that:

Vo={a€Va,a; >0}, (12)

Ve = {a € Vo, @; € [p1i» pail},

For fixed function @ € V, where V.= V9 or V = V2,
the problem in (4)-(10) the direct multi-phase Stefan
problem occurs and its solution makes it possible to find
the positions of the moving interfaces corresponding to
function a (z).

Let’s assume that functions Eram fork=1,...,n-1
describing the exact positions of the moving interfaces
are well-known. The minimized discrete functional can
be represented as:

(13)
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n-1 M

12
J@@) = (ZZ [w () (Eeis1,p —f;,k+1,,,)2]] . (14)

k=1 p=1

where w(¢) is the weight function, equalizing the influ-
ence of the length of the zones and M is the number of
points of the discretization of the moving interfaces.

The size of the gradient of temperature in the solid
zone exerts a considerable influence on the properties
of ready casts (big values of the gradient evoke the for-
mation of cracks) [19]. Therefore, in the minimization
procedure it is advisable to consider the second criteri-
on, minimizing the gradient of temperatures in the solid
zone. To achieve this, the following functionals are in-
troduced [19]:

12

L(a (@) = f VT, dxdt (15)

and

I(a () = wiJ (@ @) + w211 (@ (¥)), (16)
where w; are weight coefficients. In the problem with
constraints we will look for such element of a,, € V,
where V = V9 or V = V2, that would fulfill the following
condition:

I(an) = ‘111615 I(a). amn

To look for the minimum of functional /we used the
Nelder-Mead optimization method [6, 20]. However, for
solving the direct multi-phase Stefan problem (4)-(10),
for fixed function @, we used the generalized alternating
phase truncation method [18, 21].

3. Generalized alternating phase truncation method

For solving direct Stefan problem the alternating
phase truncation method may be used, which was worked
out by Rogers, Berger and Ciment [21]. This method be-
longs to the fixed domain methods, which try to trans-
form the problem or the way of solving so that the Ste-
fan condition occurred in the open form. The method
presented in paper [21] is applied to two-phase prob-
lems. Expanded application of this method in the case
of multi-phase is presented in paper [18].

In the alternating phase truncation method in place
of temperature which occurred in the Stefan problem we
insert an enthalpy:

L5 n—-1

HD) = [ cWewdit Y man (1) Liswior, (19

0 k=1
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where
1 for T>T;
T)= kkil) 19
M g+1 (T) {O for T<T;,,. (19)

From this definition it follows that this is an increasing
function. Thus, there is an inverse function:

T=0H), (20)

enabling the calculation of temperature on the basis of
enthalpy. Function H(T) is discontinuous in the points
given by the temperatures of the phase change T Its
left-hand and right-hand limits at these points will be
denoted as: Hy,,, and H ;.

If we use the equation (18) in the Stefan problem, we
will obtain:

Cklk - (x,0)=x ax( (x nl, @2n
G (Hk, ‘”"") -0, @2)
on ||
Hy (x,0) = H (g0 (x)), (23)
Hj i1 = Hi oy + Liks1Qis1, (24)
I A k1 ” OH (x,1)

ke k+10k+1 ar 5 akT .

kk+1 (25)
a}Ik+1 (x9 t)
+ ak+la— ,
n I‘k.l:+l

where the form of function G, describing the boundary
conditions, depends on function ® (H) and the boundary
conditions. Function H(T) narrows of function H(T)
down to the range of the temperature in k phase.

We assumed (for the simplicity of the description)
that the phases are numbered from “the warmest” to “the
coldest”, i.e. D; denotes the domain of “the warmest”
phase and D, denotes the domain of “the coldest” phase.
Let’s assume that we know the distribution of enthalpy
H (x,t) in time ¢;, from the initial condition or the pre-
vious step of the calculations. The algorithm of the gen-
eralized alternating phase truncation method (for one
time’s step) consists of n stages.

In the first stage we reduce all domain to “the
warmest” phase, that is to these points at which the value
of the enthalpy is smaller that Hj, we supply (conven-
tionally) such quantity of heat so that enthalpy will be
equal to Hy,. The pseudoinitial condition for the first
stage of the calculations has the form:

Vi (x, 1) = max {H} ,, H (x,1,)} .

The obtained one-phase heat conduction problem may
be solved (for example) by the finite difference method
or finite elements method. We get obtain the approxi-
mate distribution of enthalpy V; (x,#;41). In these points
at which we artificially supply some quantity of heat we
must subtract this same quantity of heat, as follows:

Vi (x, Fi41) = Vi (x, Bin) + (H (3, 1) = Vi (3, 1))

The distribution of enthalpy Vi (x, 1) is treated as ini-
tial for the second stage of the calculations (in time #;).

However, in stage k (k = 2,...,n — 1) we reduce
all domain to k phase, that is at these points at which
the value of enthalpy is greater that Hk w1 We transfer
(conventionally) such quantlty of heat so that the en-
thalpy will be equal to H, k +1- However, at these points
where the value of the enthalpy is smaller that H; ,
we supply (conventionally) such quantity of heat so that
the enthalpy will be equal to H;_, ,. The pseudoinitial
condition for this stage of the calculations has the form:

Vie(x, Bier) = min (Hy g, max {H]_y o Vier (o Fi) .

As in the first stage, we calculate the approximate dis-
tribution of enthalpy Vi (x,#1). At the end of stage at
these points where we artificially transferred (supplied)
some quantity of heat we must add (subtract) this same
quantity of heat:

Vi (x, £i01) = Vi (x, fis1) + (Vier (%, Bia1) = Vie (6, 8)) -

In the last stage (k = n) we reduce all domain to “the
coldest” phase, that is to these points at which the value
of the enthalpy is greater that H ," 1 We transfer (conven-
tionally) such quantity of heat so that the enthalpy will
be equal to H n a1 and thus proceed as previously. The
obtained distribution of enthalpy H (x, ;1) = V,, (x, fi41)
ends stage , as will as one step of the calculations (trans-
fer from time # to #;) for the generalized alternating
phase truncation method.

In the generalized alternating phase truncation
method for each time step the heat equation is solved
many times (n). Therefore, we must take into consid-
eration the boundary conditions, so that they influence
on the system only by time At, and not by time n - At
[18, 21].



4. Optimization

The Nelder-Mead method is a method of the min-
imization of the function of several variables. This
method requires only function evaluations, not deriva-
tives. The idea of the method consists in creating (m +
1)-dimensional simplex. Then, the function values are
compared at the simplex vertices. The simplex is trans-
formed until the criterion of the ending procedure is
fulfilled [6, 20].

In literature we can come across two kinds of the
criterion the end of the procedure. In the first criterion
[20], formulated by Nelder and Mead, the working of
the iterative procedure is ended if the maximum of the
distance between the points of the simplex and its center
of gravity is smaller than some given number. Whereas,
in the second criterion, formulated in [6], the working of
the iterative procedure is ended if the standard deviation
of the values of the function in the points of the simplex
is smaller than some given number.

The criterion of the end of the procedure will
be fulfilled if one of the inequalities (for j = 1, 2)
is true:

o;j<eg Js (26)

where, in the case of the first criterion:
27)
(28)

In the above equation I; denotes the value of the mini-
mized functional in point of the simplex, I denotes the
mean value calculated on the basis of values of the min-
imized functional in the points of the simplex:

- I;
I=Zm-;-l’

m
=0

and a; is barycentre:

l m

ull m+1 Z S
=0

The values of the functional I we compute by solv-
ing the direct Stefan problem, derived from equations
(4)—(10) for fixed heat-transfer coefficient and unknown
positions of the moving interfaces Tk k+1. As the ending
criterion we assume the alternative of conditions (26) for
g1=10and & =107,
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In Nelder-Mead method the simplex is transformed
by four operations: reflection (with parameter @ > 0),
expansion (with parameter y > 1), contraction (with pa-
rameter B8 € (0, 1)) and reduction (multiple contraction)
[6, 20]. Nelder and Mead suggest that the values of pa-
rameters @, y and B should be taken as 1.0, 2.0 and 0.5,
respectively.

The choice of the initial simplex was realized in
such a way that point gy = o, was given; however, the
other points were computed from the equation:

o=ayg+ke, i=1,...,m,
where e; are the versors of the Cartesian coordinate sys-
tem R™ and parameter k is equal to 300.

The programs calculating the algorithm of the pre-
sented method were written in C++ and in language of

the Mathematica.

5. Numerical examples

The theoretical considerations introduced in the pre-
vious sections will be illustrated with examples, in
which we consider two- and three-phase problems for
one-dimensional (! = 0) and axisymmetrical domain
(=1).

The direct Stefan problem, derived from equations
(4)—(10) for a fixed heat-transfer coefficient and unknown
positions of the moving interfaces I'; 441, will be solved
by the generalized alternating phase truncation method
[18, 21]. Next, the found positions of the moving in-
terfaces will be used as the input data for the inverse
Stefan problem. In the next parts of this paper these po-
sitions will be called the exact positions of the moving
interfaces.

The exact input data was perturbated by “measure-
ment errors”, generated by the generator of the pseu-
dorandom numbers with uniform distribution. The cal-
culations were done for some perturbation of the same
and different values. The obtained results confirm the
independence of the results from the random set of the
perturbation.

5.1. Two-phase problems

In the examples we assumed the following values:
Q = (0,0.08) [m], 4y = 33 [W/(m-K)], 2, = 30
[W/(m - K)], ¢, = 800 [J/(kg - K)], c2 = 800 [J/(kg - K)],
01 = 7000 [kg/m?], g, = 7500 [kg/m?], L = 270000
U/kgl, T7, = 1773 [K], To, = 323 [K] and the initial
temperature is equal to @y(x) = 1813 [K]. The exact
value of the heat-transfer coefficient is equal to:
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1200  for t€[0,¢,],

a(t)= 800  for t € (ty,,le,]+
250  for t € (tg,, 1),

where #,, = 38 [s], #,, =93 [s] and ¢* = 764 [s].

(29)

Example 1

The first example concerns the solution of the
one-dimensional two-phase inverse Stefan problem
(! = 0). The minimum of functional (14) was designated
in set V9.

TABLE 1
Absolute values of percentage relative errors in the calculations for different starting points
(calculations without weight coefficients, @, — starting point, 1, 2, 3 — number of the zone)
Per. a, = (800, 800, 800) a, = (900, 900, 600)
1 2 3 1 2 3
0.0% 0.00 0.13 0.00 0.00 0.13 0.00
5.0% 1.75 1.00 0.80 1.58 0.88 0.40
10.0% | 17.75 7.88 1.60 5.67 9.50 2.40
150% | 9.83 6.50 0.40 11.92 | 9.25 0.80
20.0% | 8.42 14.88 1.60 1542 | 27.38 3.20
Per. a, = (850, 650, 350) a, = (1000, 700, 200)
1 2 3 1 2 3
0.0% 0.00 0.13 0.00 0.50 0.50 0.00
5.0% 2.08 0.50 0.80 2.08 1.50 0.40
10.0% | 8.75 8.88 2.00 4.75 9.88 2.00
150% | 2.25 2.50 2.40 1.75 1.88 1.20
20.0% | 22.33 | 38.75 5.60 1.00 438 1.20
TABLE 2

Absolute values of percentage relative errors in the calculations for different starting points
(calculations with weight coefficients, a, — starting point, 1, 2, 3 — number of the zone)

bl a, = (800, 800, 800) a, = (900, 900, 600)
1 2 3 1 2 3
00% | 000 [ 013 [ 000 | 000|013 0.00
50% | 008 | 3.25 1.60 | 058 | 3.00 1.20
100% | 417 | 925 | 280 | 842 ] 825 0.40
150% | 392 | 538 | 240 | 042 | 2.00 1.60
200% | 108 | 163 | 240 | 542 | 638 2.40
bt a, = (850, 650, 350) a, = (1000, 700, 200)
1 2 3 1 2 3
00% | 000 | 013 [ 000 [ 017 | 038 0.00
50% | 375 | 338 | 000 | 175 | 1.00 2.00
100% | 467 | 013 | 240 [ 650 | 3.63 1.20
150% | 275 | 225 | 280 | 058 | 4.13 2.40
200% | 600 | 900 | 240 [ 008 | 0.88 2.40

Tables 1 and 2 present the absolute values of
percentage relative error in the reconstruction of the
heat-transfer coefficient for different starting points and
various sizes of the random noise in input data (in po-

sition of the moving interface). The results included in
Table 1 have obtained when the weight coefficients are
equals to one. This situation is equivalent to a situation
where the weight coefficients were not included in the



functional (14). Therefore in the next parts of this pa-
per this situation we will be called the situation without
weight coefficients. However, the results included in Ta-
ble 2 have been obtained when the weight coefficients
are depending on the lengths of the zones (the coefficient
increases with a decrease in the length of the zone). The
sum of all coefficients is equal to one.

The obtained results show that for the input data
without noise function is reconstructed with the accura-
cy to the errors arising out of the assumed moment of
the end of the optimization process. The errors increase
together with an increase in the noise in the input data.
The heat-transfer coefficient is reconstructed very well
for the noise not bigger than 15%. The errors in the
reconstruction of the heat-transfer coefficient are signif-
icantly smaller than'the errors in input data. However, if
the noise equals to 20% for some of the starting points
(ap =(900,900,600)) and (), = (850,650,350)) the errors
in the results, for the calculations without weight coeffi-
cient, are bigger than the errors in the input data. In this
case, it turned out that the introduction of the weight
coefficients has significantly improved the obtained re-
sults. However, for smaller noise, the introduction of the
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weight coefficients has not improved the obtained results
significantly.

Out of all parameters describing the function « is
the last parameter (a3;) is reconstructed best. This is
connected with the length of the interval on which this
parameter is given (@) is given on the interval (0,38],
a; on the interval (38,93]; however, a3 on the interval
(93,764]), and even distribution of the control points, de-
scribing the position of the moving interface, most of the
control points fall into the longer interval. The consid-
eration of the weight coefficients in the calculations, in
general insignificantly worsens the reconstruction of this
parameter. However, it improves (in general) the recon-
struction of the first and the second parameter of fun-
ction a.

Figure 2 presents the results of the reconstruction
of the moving interface, for the found function a,, (for
starting point @, = (800,800,800)). The exact position
(solid line) and reconstructed position (dot line) of the
moving interface are show in this figure. It follows from
the calculations that irrespective of the given size of the
noise in input data and the starting point the moving
interface is reconstructed very well.

.08
.07
.06}
.05
.04
.03
.02

o o 0 o O O 0 o

.01}

400
t

100 200 300 500 800 700

Fig. 2. Position of the freezing front reconstructed for the starting point a, = (800, 800, 800) and data with perturbation equal to 5%
(left figure), 15% (right figure) (solid line — exact position, dot line ~ reconstructed value)

Example 2

Now we will present the solution of the axisymetri-
cal two-phase inverse Stefan problem (! = 1). The min-
imum of functional (14) was designated in sets V2 and
V? for different number of the control points (§]‘.‘). Set

V? is defined as follows:

Ve = {a € V4 @1 € [1000, 1500] A a3 € [500, 1000]A
A a3 € [150,500]}.

Table 3 presents the results obtained for the mini-
mization in set VO for different starting points (ap) and
for forty control points (M = 40) describing the position
of the moving interface. The obtained results confirm
that the choice of the starting point does not have es-
sential influence on the results of the reconstruction of
function . Even for a distant starting point such as point
ap = (0,0,0), at which the Robin condition is given on
boundary I';, it is transformed to Neumann condition
with heat flux equal to zero, function « is reconstructed
with the accuracy to the errors arising out of the assumed
moment of the end of the optimization.
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TABLE 3
Results of the calculations for different starting points (a, - starting point, @,, — the found point of the minimum)
@p 75

api QXp2 ap3 @) Am2 Xm3
1000 | 500 § 500 } 1200 | 800 | 250
1000 | 700 | 200 | 1200 | 802 | 249
900 | 900 { 600 | 1200 | 801 | 250
800 | 800 | 800 | 1198 | 801 | 250
700 | 300 | 450 | 1200 | 802 | 248

0 0 0 1201 | 799 | 251

Table 4 present the absolute values of the
percentage relative errors in the reconstruction of the
heat-transfer coefficient for the minimization of the
functional in sets VO and V. for giving (with and

without noise) 398, 40 or 20 control points descri-
bing the position of the moving interface. Starting
point @, = (1000,500,500) was used in the calcu-
lations.

TABLE 4
Absolute values of the percentage relative errors in the calculations for different number of control points
Ve v
Po T T 2 1 3 | 1] 2 [ 3
M =398
0.0% 0.00 0.00 000 { 000 [ 0.00 | 0.00
5.0% 2.08 2.63 040 | 2.08 1.63 | 0.80
100% | 5.92 7.50 1.60 | 275 { 3.13 | 040
150% | 8.75 10.13 160 | 333 | 2.88 1.20
M =40
0.0% 0.00 0.13 040 | 000 | 025 | 040
5.0% 0.58 5.75 680 | 0.00 | 2.00 | 3.60
10.0% | 3.00 18.63 | 20.80 | 692 | 225 | 9.20
15.0% | 18.50 | 33.88 | 20.00 | 533 | 1050 | 4.40
M =20
0.0% 0.25 0.63 040 | 008 | 025 | 040
5.0% 7.50 7.50 0.80 125 | 663 | 2.00
100% | 1575 | 2038 | 6.80 | 575 | 8.38 | 3.20
150% | 13.17 | 25.88 | 1480 | 342 | 13.75 | 9.20

For the input data without noise the heat-transfer
coefficient is reconstructed very well, irrespective of the
number of the control points. Small errors are a con-
sequence of the acceptance of the moment of the end
of the numerical procedure. For the biggest number of
the control points, in the case of minimization in the set
V9, an increase in the errors in the input data, causes an
increase of the error in reconstruction of the heat-transfer
coefficient, but at all times it is smaller than the errors in
the input data. However, for smaller number of the con-
trol points these errors increase quickly together with an
increase in the error in the input data. The improvement

of the results (see Table 4) may be obtained if, instead of
designating the minimum of the functional in set Vg, we
will designate this minimum in set V7 for adequately se-
lected (for example for the sake of technology) intervals

(p1i> Pail-

5.2. Three-phase problems

Example 3

In this example we will present the solution
of one-dimensional three-phase problem, in which
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domain Q is interval (0,0.1) [m]. In the example we 2,5 = 180 [s], ta3 = 262 [s], fas = 453 [s], te5 = 669 [s]
assumed the following values of the parameters used in  #* = 764 [s]. The exact value of the heat-transfer coeffi-
the expression of the problem: 1; = 54 [W/(m - K)], cient is equal to:

Ay = 42 [W/(m - K)], 43 = 30 [W/(m - K)], ¢; = 840

[J/(kg - K)1, ¢z = 754 [J/(kg - K)], c3 = 668 [I/(kg - K)], 1200 forte€[0,1,],
o1 = 37000 [kg/m’], 02 = 7250 [kg/m?®], o3 = 7500 950  fort € (tg)s 0] »
[kg/m’], Lz = 197600 [J/kgl, Lz = 49400 [J/kg], 600  fort € (faz, tas] s
Ty, = 1801 [K], ], T3, = 1781 [K], Te = 303 [K] @(8),= Juigapiigt G (30)
and the initial temperature is equal to ¢o(x) = 1853 = Sl
[K]. Five points of the change in the value of the 300  fort € (ta,tas],
heat-transfer coefficient were assumed: ?,;, = 38 [s], 250  fort € (ty,17).
TABLE 5

Absolute values of percentage relative errors in the calculations of the heat-transfer coefficient for different starting points and different
number of control points

M | Qi l O | A3 I Q4 | s ] At
a, = (1200,900,350,350,350,250)
775 | 042 | 0.00 | 0.83 | 125 | 1.00 | 1.20
155 | 0.50 | 0.11 | 0.83 | 6.00 | 2.00 | 5.20
78 067 | 032 | 033 | 675 | 233 | 7.20
15 1.08 | 1.05 | 2.33 | 850 | 1.67 | 8.80
a, = (1100,850,700,700,275,225)
775 1 000 | 0.11 | 0.83 | 1.75 | 1.00 | 1.60
155 1 000 | 021 | 1.83 | 575 | 1.00 | 3.20
78 | 075 | 053 | 1.83 | 625 | 1.00 | 3.20
15 | 042 | 0.63 | 317 | 725 | 1.67 | 2.00
a, = (700,700,300,300,250,200)
775 | 0.00 | 021 | 1.00 | 1.50 | 1.33 | 1.60
155 | 0.42 | 0.11 | 1.00 | 550 | 1.67 | 3.20
78 1.08 | 053 | 1.17 | 475 | 1.67 | 4.80
15 092 | 158 | 083 | 7.75 | 1.67 | 5.20

0.1 i 0.1
0.08 0.08
= 0.06 4 x 0.06}
/i—Z) r23
0.04 / 0.04 /
I, F.
0.02 . S 1z
100 200 300 400 500 600 700 100 200 300 400 500 600 700
t t

Fig. 3. Position of the moving interfaces reconstructed for @, = (1200, 900, 350, 350, 350, 250) (left figure — M = 755, right figure - M = 15,
solid line — exact positions, dot line — reconstructed positions)

The moving interfaces I'l2 and I';3 are given in the Table 5 present the absolute values of percentage
discrete form, for different number of the control points relative errors in calculating of function a in the case
(M € {775,155,78,15}). The calculations were carried of a different number of the control points and differ-
out for different starting points. ent starting points. The obtained results confirm that the
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choice of the starting point for the optimization method
does not have on essential influence on the value of the
found point of the minimum. However, a decrease in the
number of the control points causes an increase in the
errors in the reconstruction of the function describing
the heat-transfer coefficient.

Figure 3 presents the exact positions of the moving
interfaces and positions reconstructed for the calculat-
ed point of minimum (a,,) for different starting point
and different number of the control points. It follows,
that the choice of the starting point and number of
the control points don’t have a big influence on the
reconstruction of the positions of the moving
interfaces.

Example 4

This example presents the solution of the axisymet-
rical three-phase problem, in which domain Q is interval
(0,0.6) [m]. In the example we assumed the following
values of the parameters used in the expression of the
problem: A; = 54 [W/(m - K)], 4, = 42 [W/(m - K)],
A3 = 30 [W/(m - K)], ¢; = 840 [J/(kg - K)], c; = 754
Dikg - K)], c3 = 668 [J/(kg - K)I, o1 = 7000 [kg/m?],
02 = 7250 [kg/m3], g3 = 7500 [kg/m?], L;, = 217600

[V/kgl, Lp3 = 54400 [J/kgl, T3, = 1773 [K], T3, = 1718
[K], T = 303 [K], and the initial temperature is equal to
@o (x) = 1803 [K]. The ends of the zones are in points:
ty;1 = 0.4 [s], tyy = 1.4 [s], tas = 2.2 [S], taa = 3.4 [s],
1> =10 [s].

The moving interfaces are given in the dis-
crete form for different number of the control points
(M e {244,122,49}). All calculations have been car-
ried out for the starting point (a;,as,@s,a4,as5) =
(1450,950,650,550,270). The minimum of functional
(16) is designated in set V-

V% = {a € V4, @) € [1300, 1600] A @; € [800, 1000] A
A a3 € [600, 800] A a4 € [400,600] A a; € [200,300]}.

The exact value of the heat-transfer coefficient is equal
to:

1460 for t € [0,1,],
872  for t € (ty,,14,],
a(t)=1 695 for t € (ty,,14], 3D
515  for t € (ty,,14,],
250  for t € (t,,,1").
TABLE 6

Absolute values of percentage relative errors in the calculations of the heat-transfer coefficient for different number
of the control points and one and two criteria of the minimization

M Func. Q1 A2 U3 Uma Qs
49 J 4.66 | 2.64 | 648 5.83 2.40
1 233 | 344 ;1 935 | 11.85 | 16.40
122 J 548 | 3.21 | 547 8.35 4.00
I 651 | 3.67 | 475 | 13.20 | 14.40
244 J 0.62 | 1.84 | 1.87 0.19 2.00
1 069 | 3.90 | 4.89 5.05 6.40

Table 6 present the absolute values of percentage
relative errors in the calculations of function ain the
case of a different number of the control points for one
and two criteria of the minimization. It follows from the
calculations, that in the case of one criterion, that is the
minimization of functional (16) with weights w; # 0
and wy # 0, the positions of the moving interfaces are
reconstructed very well. The consideration of the second
criterion, that is the minimization of functional (16) with
weights wy # 0 and w; # 0, causes extended time of the
solidification. This is caused by decreasing gradient of
the temperature in the solid zone. In the rows marked by
letter J value of the point of minimum for the minimiza-
tion of one criterion is presented. Whereas, in the rows
marked by letter I the value of the point of minimum
for the minimization of a two criteria. It follows from

the calculations that adding the second criterion causes
decrease in value of functional (15), thus decreasing the
value of the gradient of the temperature. A decrease in
the value of functional (15) is bigger in the case were the
reconstruction of the positions of the moving interfaces
was made freely that is, when the smallest number of
the control points is given. Adding the second criterion
causes an increace in the error in the reconstruction of
function @ which describes the heat-transfer coefficient.
A decrease in gradient of the temperature in the solid
zone to the value derived from the minimization of the
two criteria, doesn’t have any influence on the recon-
structed position of the moving interface I'y,. However,
it evolves a change in the reconstructed positions of the
moving interface I';3, characterized by extended time of
solidification. The deviation of curve I';3 from given po-



sition increases together with a decrease in the number
of the control points. In the case of the biggest number
of the control points, the differences between the exact
and reconstruction positions of the moving interfaces are
very small.

6. Conclusion

The discussed method used the Nelder-Mead opti-
mization method and method for solving the direct Ste-
fan problem. In the examples presented in the paper we
used the generalized alternating phase truncation method
(one of several tested) for the sake of its exactness and
practical character in multi-phase and multi-dimensional
problems.

The optimization method enables the reconstruction
of the boundary condition, when the positions of the
moving interfaces are well-known. This method requires
the sought boundary condition to be described by means
of the finite number of parameters. However, it doesn’t
require the sought boundary condition to be linearly
dependent on these parameters. Because this method
requires only function evaluations, not derivatives, the
functional can also depend nonlinearly on the sought
parameter. In the paper the authors presented examples
of the selection of the heat-transfer coefficient in some
fixed zones. Finely, the problem can be reversed, to select
the number and length of the zones for fixed value of
the heat-transfer coefficient.

The derived calculations show that for the input da-
ta without noise the function describing the heat-transfer
coefficient is reconstructed with minimal errors, which
are a consequence of the acceptance the moment of the
end of the numerical procedure. For the exact input data
a sensible choice of the starting point for the optimiza-
tion method doesn’t have an essential influence on the
errors in the reconstructed the heat-transfer coefficient. A
decrease in the number of the control points, for the input
data without noise, doesn’t cause significant changes in
the reconstructed boundary condition.

The obtained results confirm the independence of
the results from the random set of the perturbation. They
also indicate, that for the errors not bigger than 15% the
errors in the results generally don’t exceed the errors
in the input data. In some examples, this tendency also
occurred for the errors reaching 20%. The introduction
of the weight coefficients does not have a big influence
on the improvement of the obtained results, when the
errors in the input data are smaller than 15%. However,
they significantly improve the obtained results for bigger
errors.

A decrease in number of the control points caus-
es an increase in the errors in the reconstruction of the
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function describing the heat-transfer coefficient, this ten-
dency especially intensifies together with an increase in
the errors in the input data.

If the solution is determined in set Vf,’, then, for
big errors, the results are significantly different from the
expectations. In this case, the improvement is obtained
by seeking the minimum in set V9 and not V7, for ade-
quately selected (for example for the sake of technology)
intervals [py;, pail.

The advantage of the presented method is a pos-
sibility of adding other criteria of minimization. This
possibility has a special importance in the design
problems, in which we want the solidification pro-
cess to proceed in a given way and the finished ingot
to have suitable parameters (for example no have
cracks).

The presented method can be easily applied for so-
lution of various kind of design problems, for example
in designing the installation of the continuous casting
(for example: selection of length of the zones in the sec-
ondary cooling region (water-spray cooling), numbers of
nozzles in individual zones).
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