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TUNING OF DEFORMATION MODELS BY RESIDUAL STRESS MEASUREMENTS

SKALOWANIE MODELU DEFORMACJI NA PODSTAWIE POMIARU NAPREZEN

Issue 2

WEWNETRZNYCH

Deformation models are generally used for prediction of mechanical tests, crystallo-
graphic textures and for interpretation of residual stress measurements. Existing models
have very different levels of interaction between a grain and the surrounding material. If
an isotropic interaction is assumed, the relation between micro- and macroscopic quanti-
ties contains only one interaction parameter (L). The simplest plastic deformation models,
proposed by Sachs and Taylor, are based on the limiting assumptions of strain or stress
homogeneity within the polycrystalline material; consequently L=0 in Sachs model and
L—o0 in Taylor model. In more realistic approaches the L parameter has some finite value
(and different from zero). In the early version of the self-consistent model (Berveiller and
Zaoui), the L parameter was expressed as: L=aG (G being the shear modulus and @ — the
elasto-plastic accommodation parameter from the range [0, 1]). The aim of the present work
is to find a real level of the interaction parameter for highly rolled steel. The estimation was
done by comparing predicted and experimental data for residual stress and crystallographic
textures.

Keywords: Deformation models, residual stress, second order stress, crystallographic
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Modele deformacji sa na ogét uzywane do przewidywania rezultatéw testéw mecha-
nicznych, tekstur krystalograficznych oraz do interpretacji pomiaréw naprezeri wewnetrz-
nych. Istniejgce modele charakteryzujg si¢ bardzo réznym poziomem oddzialywania pomie-
dzy danym ziarnem i otaczajacym materialem. Jesli zalozy si¢ oddziatywanie izotropowe,
to relacja pomigdzy wielko§ciami mikro- i makroskopowymi opisywana jest tylko jednym
parametrem (L). Najprostsze modele deformacji, sformutowane przez Sachsa i Taylora, opie-
rajg sig na granicznych zatozeniach jednorodnosci naprezenia lub deformacji w materiale; w
konsekwencji otrzymujemy L=0 w modelu Sachsa oraz L—co w modelu Taylora. W bardziej
realistycznym opisie deformacji elasto-plastycznej, parametr L posiada okre$lona, skoficzo-
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ng warto$é (i rézng od zera). We wczesnej wersji modelu samo- uzgodnionego (Berveiller,
Zaoui), parametr L wyrazony zostal jako: L=aG (gdzie G jest modulem §cinania, za§ o
jest wsp6iczynnikiem akomodacji elasto-plastycznej, przyjmujacym wartodci z przedziatu
[0, 1]). Celem obecnej pracy jest znalezienie realistycznego poziomu parametru oddzialy-
wania dla walcowane;j stali. Oszacowania tego dokonano przez poréwnanie przewidywanych
i zmierzonych naprezen szczatkowych oraz tekstur krystalograficznych.

1. Introduction

The essential point of any deformation model of polycristalline material is the
interaction law, describing the relation between local and macroscopic stress and strain
tensors (Fig. 1). There exist a wide varietv of deformation models. They describe

%, E
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Fig. 1. I; stress tensor is applied to the sample and a grain is subjected to a local stress tensor o;.
Similarly, the sample deformation is E; but local grain deformation is &

macroscopic deformation of a material based on some micro-structural and crystallo-
graphic data and assumptions. The basic question of micro-macro transition can be
formulated as follows:

?

The existing elasto-plastic models have very different interaction laws. However,
in some approximation, a typical interacion law can be expressed as:

(;'ij = Zjj + L (Bua = £1)» 2)

where o7;; and g;; are stress and strain of a grain, %;; and E;; are the same quantities
for the sample, L;j, is the interaction tensor (the summation convention on the repeated
lower index is used in this paper) and dot means the time derivative. If the isotropic
interaction between a grain and its neighbours is assumed:

0y = I + L(Ej — ). 3)
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The interaction parameter L becomes a scalar one. The simplest plastic deformation
models, proposed by Sachs and Taylor [1, 2], are based on the limiting assump-
tions of strain or stress homogeneity within the polycrystalline material; consequently
L=0in Sachs modeland L — coin Taylor model. A more realistic approach is
based on the concept of self-consistent modelling of the elastic and plastic properties
of inhomogeneous material. In the early version of the self-consistent elasto-plastic
model proposed by Berveiller and Zaoui [4], the interaction parameter was
expressed as: L = oG, where G is shear modulus and « is the elasto-plastic accommo-
dation parameter, taking values between 0 and 1. It is interesting to note that in a purely
elastic model of Kréner [3]: @=l1. In general @ < 1 because an additional local glide
appears in grain boundary regions and this reduces the inter-granular incompatibility.
The aim of the present work was to find the real value of L (or of @), comparing
predicted and measured residual stresses and textures.

2. Deformation model

The polycrystalline deformation model proposed by L e ffe rs [5] and developed
by Wierzbanowski [6] was used in the present work (LW model). A poly-
crystalline sample is represented in the model by 5000 grains with initial orientation
distribution corresponding to the initial sample texture. The calculations are performed
at two different scales, i.e.: at the macro-scale where the stress applied to the sample
(Z;)) is defined and at a grain- scale where the behaviour of each crystallite under a
local stress (07;) is analysed. Only these slip systems <uvw> {hkl} are activated in
grains for which the resolved shear stress Tuvw>(hk!) €Xceeds some critical value 7,
(Schmid law). The linear hardening of slip systems was used [7]:

% =3HIY, @)

where: T’ is the rate of critical stress in the i-th system, 71 is a rate of the plastic
shear strain on the j-th system and H" is the work hardening matrix. In the present
work the isotropic hardening matrix was used, i.e., HY= h(for all i, j). The rolling
process is described by the application of macroscopic load with ;3= - X33, other
components being zero. The amplitudes of both stress components are mcrementally
increasing during calculations in order to maintain slip systems activation in grains (7.,
are increasing). Calculations are performed since a preset final deformation is attained.

It has already been mentioned that the essential point of each model is the relation
between macroscopic (Z;; j and E; ) and grain (6, and §; ;) quantities. In the present
work, the isotropic approxxmatlon of grain-matrix mteractmn was used (Eq. 3). The
model calculations furnish grain and sample deformations, mechanical tests predictions,
crystallographic texture change, dislocation density and the state of residual stresses
(6, 8-10].



466

3. Experimental method of residual stress determination

In the present work a general multi-reflection method of stress determination
was applied (see e.g. [10]). Classical X-ray diffraction (Cr radiation) was used. The
inter-planar distances <d(@, ) > are measured for different hkl reflections and for
various orientations of the scattering vector characterized by the ¢ and ¢ angles (see
Fig.2). If one deals only with the first order residual stress (o'ilj), the strain measured
along the scattering vector ( L3 axis — Fig. 2) is:

S;(ND)

Fig. 2. Sample (S) and laboratory (L) systems used in the residual stress measurement by diffraction
method (L3 parallel to the scattering vector)

< &, ) > = Fy(hkl, ¢, ¢, £(g)) o7, )

where:
<dW.d) > way —d

<&, P) >y = o ©
{hki}
or in equivalent form:
< d(@,¥) >y = [F(hkl, ¥, 6, f(g)) o51df,) + A Q)

where F;j(hkl,y, ¢,f(g)) are diffraction elastic constants (calculated using the
self-consistent model and sample texture [11]); besides of ¢ and ¢ angles and hkl
reflection indices, they depend also on texture function f(g) of the sample. In the
multi-reflection method the equivalent lattice constants:

<ay, $)>wn=<dW, ¢)>py VhZ +k2+12 and a° = dyy, Vh2+k2+12 (8)
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are treated simultaneously in the fitting procedure [8-10]. The values of a° and crilj are
found from Egs. 7 and 8. The obtained results are statistically more representative in
comparison with the single reflection method.

In the present work a plate of single phase ferritic steel, rolled to 95% reduction was
examined (final thickness of 1 mm). The surface layer of about 200 um was removed
by electro-polishing. It was assumed that measurements were representative for the
bulk volume of the material and that only o-§3 macro-stress component was relaxed
while the second order stresses were approximately unchanged. The <a(¢, ¥)> ) were
determined for 211, 200 and 110 reflections and for various ¢.

4. Determination of interaction parameter

The lattice strains <¢’(i, ¢)>ky in plastically deformed material can be generally
expressed as a superposition of strains induced by the macro- stresses and by the second
order incompatibility stresses [8, 9]. Consequently Eq.5 will take more extended form:

< & (@, ¥) >y = F(hkl, ¥, ¢, f(2)) 05 + < Y3mY3nSmniy > (ni), ©))

where smpj are single crystal elastic constants and a'i‘jI is the second order incompatibil-
ity stress defined for a grain (the latter quantities being expressed in S system, hence
y is the transformation matrix from S to L system — c.f. Fig. 2); < --- > means
the average over diffracting crystallites. The criI.I incompatibility stress remains after
unloading of the macro- stresses and is caused by different plastic deformations of
grains. It can be approached from the model (Eq. 3) as:

iljl = L(E; — F:‘ij), (10)

where O'il-l is the model predicted second order incompatibility stress. We suppose,
that anisotropy of incompatibility stresses is well predicted by the model. However, the
absolute stress level depends on complex hardening processes which are not completely
described by the simple linear hardening law used in the model (Eq. 4). This is the

reason why the predicted O'iljl stress tensor is rescaled using some factor (g) :

ole) = qoll(e). (1)

Finally, the strain measured in diffraction experiment is expressed as:

< &' (¢, ¥) >y = Fij(hkl, ¢, ¢,f(g)) o ,IJ +q < Y3m¥3n SmniJ'O'inI > (hK) - (12)

Or taking into account Eqs 6 and 8:

<a,$) > = [Fy(hkl, ¥, 4, f(2)) 0 +q < VsmYsnsmuoh >1a°+a°  (13)
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Comparing measured and predicted <a(y, ¢)>p; Vs sin®y relations, o-ilj, a, and

q can be determined as fitting parameters. The additional term q <y3my3nsmnija-iljl>,

characterizing non-linearities of the sin®/ plot, improves considerably the agreement
between calculated and experimental data — Fig. 3. The best fit was obtained for the
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Fig. 3. Measured lattice parameters (points) and theoretical results of fitting (continuous lines for q # 0
and lines for q = 0) for cold rolled steel. The experimental data for various hk! reflections were
simultaneously used in the fitting procedure. LW model (L = 800 MPa) was used

value L=800 MPa (¢=0.01) of the model interaction parameter. Also the predicted and
experimental textures are in good agreement in this case (Fig. 4).

The following non-zero components of the first order stress were obtained from our
measurements: o, = -60.4 MPa, o}, = -72.6 MPa. On the other hand, the estimated
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Fig. 4. a) Predicted (LW model, L=800 MPa), and b) measured rolling texture of low carbon steel;
rolling reduction 60%

Von Mises measure of the second order incompatibility stresses o/ was 55 MPa
(q=1.27 was found). Hence, the second order incompatibility stresses have comparable
order of magnitude as the first order stresses and they have important influence on
local behaviour of grains.

5. Conclusions

The proposed method enables evaluation of the interaction level in deformation
models. It is based on the comparison of measured and predicted <a>q vs sin?y re-
lations. The best adjustment for the rolled steel samples leads to the value of L = 800
MPa (a =0.01) which corresponds also to the best texture prediction. This means
that mutual grain-grain interactions are about 100 times weaker compared with pure-
ly elastic relation (@=1). This “softening” of interaction can be explained by some
additional local glide in the region of grain boundaries. It reduces the grain-matrix
plastic incompatibility and hence the values of residual second-order stresses; they
have comparable level as the first order stresses.
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