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APPLICATION OF CAFE MULTISCALE MODEL TO DESCRIPTION OF
MICROSTRUCTURE DEVELOPMENT DURING DYNAMIC RECRYSTALLIZATION

ZASTOSOWANIE WIELOSKALOWEGO MODELU CAFE DO OPISU ROZWOJU
MIKROSTRUKTURY W TRAKCIE DYNAMICZNEJ REKRYSTALIZACJI

Multiscale CAFE (Cellular Automata – Finite Element) model of the material undergoing dynamic recrystallization is
presented in the paper. The coupled model consists of dislocation and microstructure development description based on Cellular
Automata (CA) and continuum macroscale simulation using Finite Element (FE) method. The model is capable of simulate
various characteristics of the material, including multi-peak and single-peak flow stress behaviour. Several improvements to
the CA model are proposed in the paper. The connection between flow stress characteristic and grain size is properly described
by the model with respect to the structural criterion. Additionally, distribution of grain size can be calculated at arbitrary stage
of the process. Analysis of recrystallization cycles observed in the material is discussed. The results show good qualitative
agreement with the experimental flow stress curves commonly observed in literature.
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W artykule zaprezentowano wieloskalowy model CAFE (Cellular Automata – Finite Element). Model ten złożony jest
z symulacji rozwoju mikrostruktury i gęstości dyslokacji, opartej o metodę Automatów Komórkowych (AK, CA) oraz mode-
lu skali makro, opartego o Metodę Elementów Skończonych (MES, FE). Zaproponowano szereg usprawnień do modelu skali
mikro. Model ten umożliwia uwzględnienie różnych charakterystyk naprężenia uplastyczniającego, w tym jednopikowego i wie-
lopikowego. Model poprawnie odwzorowuje kryterium strukturalne, łączące charakter krzywej naprężenia uplastyczniającego z
wielkością ziarna. Zaletą modelu jest dostarczanie zarówno informacji o średniej wielkości ziarna jak i o rozkładzie wielkości.
W pracy przeanalizowano krzywe opisujące ułamki cykli rekrystalizacji w materiale. Uzyskane z modelu krzywe naprężenia
uplastyczniającego wykazuje dobrą zgodność jakościową z powszechnie znanymi z literatury danymi doświadczalnymi.

1. Introduction

Despite years of research, the unified theory of re-
crystallization is debatable, especially for dynamic re-
crystallization (DRX). The efforts which were made by
experimentalist explained basic aspects of the DRX, in-
cluding nucleation and grain growth. However, these re-
sults are often difficult to apply in simulation models.
The expectations for realistic model of DRX encompass
microstructure evolution as well as mechanical behaviour
of the material. Among various approaches proposed
for simulation of recrystallization, the most notable are
Monte-Carlo Pott’s method, Vertex Method and Cellular
Automata. Review of these methods is presented in [1,
2]. Aforementioned methods take into account topology
of the microstructure and its influence on primary grain

boundary (GB) migration, nucleation of new grains and
subsequent grain growth. However, these methods are
proved useful only for small pieces of material, com-
posed of up to thousands of grains. Another limitation
is connected with the common assumption of constant
temperature, strain rate and strain increments. These sim-
plifications are unacceptable for larger samples, even for
those used in the standard uniaxial compression tests.

Another group of models is aimed at coupling
with solution of partial differential equations describing
thermo-mechanical behaviour of the material. The finite
element (FE) method is commonly used for this class of
problems. However, treating the material as continuum
is one of obstacles in the development of reliable DRX
models. The FE models based on crystal plasticity theo-
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ry (CP-FEM) are able to cope with direct simulation of
microstructure development, because every grain in the
material is discretized by several finite elements. The
fields of mechanical and thermal properties can be cal-
culated. These methods are also limited to small pieces
of material due to huge computational outlay, which is
the main drawback of the methods. The Internal Vari-
able Method (IVM) [3] coupled with FE is another ap-
proach to simulation of microstructure development. The
method introduces a state variable, which represents state
of the material and is usually connected with dislocation
density. The multi-variable models were also proposed
(e.g. [4]), where other parameters of microstructure are
considered, such as an average subgrain size and the
average misorientation angle between subgrains. Ability
to account for the history of deformation is an advan-
tage of IVM. One of the limitations of the IVM is lack
of deep insight into phenomena of microstructure evolu-
tion, because the method operates on statistical level and
neglects topological relationships in the microstructure.
Obviously, the useful information about microstructure
characteristics, such as mean grain size, is given. Alas,
description of the material in a statistical manner reduces
physical support, which is present in the previously dis-
cussed group of the methods.

Generally, the FE models of hot working processes
in which DRX plays an important role, are mostly re-
liable and well-established even for industrial problems,
but they suffer from the lack of the microstructural infor-
mation. On the other hand, the CA and other methods of

microstructure simulation can provide useful information
about the material in microscale [1,5-11], but are limited
to very small size of simulation domain. Moreover, com-
plicated shapes of the sample are usually unacceptable
for these methods. Therefore, the objective of the present
work is to overcome those limitations by connection of
the CA microstructural model with the FE macroscale
simulation. The similar approaches are presented in [12,
13]. The emphasis in this work is put on development
the transition rules, which give realistic description of
phenomena occurring during dynamic recrystallization.

2. The CAFE model

The idea of the CAFE model is to couple FEM with
physically supported CA simulation of material under-
going DRX. Therefore, the microscale and macroscale
behaviour of the material is simulated by different meth-
ods, appropriate for respective scales. The CAFE model
supplies information, which is hard to obtain using the
pure CA or FE approach. Since the state of the material
is hold within CA simulations and its changes deter-
mine the plastic flow, the model can be interpreted as
an extended IVM. Moreover, while only a few scalars
describe material state in the classic IVM, the image of
microstructure is stored in the CAFE approach.

The uniaxial compression test is used as an exam-
ple of the hot working process in this work. The CAFE
model consists of three layers, which are shown in Fig. 1.

Fig. 1. The general concept of the presented CAFE solution
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The first layer based on FEM is responsible for macro-
scopic description of the material. The second layer is
used for interconnection between macroscopic and mi-
croscopic model, which include calculation of material
parameters crucial for FE solution. The role of the third
layer, which is based on CA calculations, is to simu-
late development of the microstructure and evolution of
dislocation density. The mutual feedback between adja-
cent layers is introduced. Every Gauss integration point
in the FE mesh is connected with separate microscale
simulation through mesoscale model, which calculates
flow stress on the basis of average dislocation density
in CA lattice. The evolution of dislocation density and
microstructure is governed by state transition rules of
CA.

The software was developed, which allows agglom-
eration of quantities to be calculated at all levels of the
model. The grain size can be mapped to the finite ele-
ment mesh and postprocessed.

2.1. The macroscale FE model

The macroscopic layer describes the material be-
haviour as continuum, which includes calculation of
strain, stress and strain rate and temperature fields. The
flow formulation is used in the FE solution. This ap-
proach is based on the variational principle [14]:

∫
Ω

σ,i jε̇i jdΩ +
∫
Ω

λε̇V dΩ −
∫
Γ

τividΓ = 0, (1)

where Ω – control volume, Γ – boundary of control
volume, σi j – Cauchy tensor of stresses, ε̇i j – strain
rate tensor, vi – velocity, λ – Lagrange multiplier. The
incompressibility constraint is given by ε̇V = 0 in Ω,
where ε̇V – volumetric strain rate. The boundary condi-
tions σi jn j = τi on Γτ (suppressible boundary condition)
and δvi = 0 on Γv (essential boundary condition), are
imposed.

In the flow theory of plasticity, strain rates are re-
lated to stresses by the Levy-Mises flow rule:

σ =
2σ f

3ε̇e f f
ε̇, (2)

where σ, ε̇ are the vectors containing components of
stress and strain rate tensors, respectively, ε̇e f f – effec-
tive strain rate and σ f – flow stress.

The mechanical problem is coupled with the FE so-
lution of Fourier heat transfer equation:

∇ [k (T )∇T ] + Q (T ) = cp (T ) ρ (T )
∂T
∂t
, (3)

where k(T ) – conductivity, T – temperature, Q(T ) – heat
generated due to plastic work, ρ(T ) – density, cp(T ) –
specific heat, t - time. The boundary condition is pre-
scribed at the boundary surface and it is a function of
surface temperature of the workpiece, time and position:

k
∂T
∂n
= q + α (T − T0) , (4)

where n – unit vector normal to the surface, q – heat
generated at the boundary, T – surface temperature, α
– heat transfer coefficient, T0 – temperature of the sur-
rounding medium.

Discretization of functional (1) is performed us-
ing four node quadrilateral elements. The result-
ing set of non-linear equations is solved by the
Newton-Raphson method. The detailed description of a
thermal-mechanical FEM code developed by the authors
is presented in [14].

2.2. Mesoscopic model

Since flow stress σ f is the only material parameter
in the flow rule (2), it is convenient to formulate interme-
diate model between CA and FE, which is responsible
for calculation of σ f . The link between macroscale and
mesoscale model is similar to those used in the IVM.
Contrary to the IVM, the present approach includes state
variable, which has a complex structure and consists
mainly of CA lattice and several auxiliary objects, in-
cluding the simplified representation of grains in the
microstructure. Thus, every Gauss integration point in
the FE mesh is connected with the CA lattice and the
flow stress is calculated by mesoscopic model in these
points during each time increment of the FE solution.
The local strain, strain rate, temperature and time incre-
ment provided by FE are passed to the corresponding CA
lattice. The material response, calculated on the basis of
dislocation density evolution in the CA space, is returned
as a feedback to the FE code. Due to incompatibility of
the time step lengths in the CA and FE simulations, the
necessary interpolation of σ f is performed. The flow
stress is calculated as:

σ f = αµb
√
ρavr , (5)

where α – coefficient, µ – shear modulus, b – length of
the Burger’s vector, ρavr – average dislocation density in
the CA lattice.

The mapping function between FE nodes and
CA lattices enables assignment of different initial mi-
crostructures to each node. Each initial microstructure
can be characterized by different distribution of grain
size and orientation, as well as initial dislocation density.
This feature is advantageous e.g. in case of simulation



260

which is performed for the samples of heterogeneous
distribution of grain size. Moreover, smaller CA lattices
can be assigned to the regions of material that are known
to be subjected to smaller deformation.

2.3. Microscale CA model

The microscale CA model is responsible for the evo-
lution of grain size and dislocation density. For this pur-
pose the 2D CA lattice with periodic boundary condi-
tions is used. The lattice of cells represents the image
of microstructure and reproduces topological relations
between grains. The state of each cell is represented
by four state variables: (1) local dislocation density ρ,
(2) orientation φ, (3) distance variable x that controls
GB migration, (4) assignment of the cell to the grain.
Additionally, the changes of grain assignment and oth-
er transitions of the state, which are concomitant with
recrystallization in cells, are counted by auxiliary state
variables, described further in the paper.

The image of initial microstructure is a starting point
for calculations. This initial microstructure is generated
using CA algorithm of a normal grain growth, partially
based on the work [15]. The algorithm is adapted to the
construction of the microstructure images with various
distribution of grain size and orientation. Homogeneous
distribution of the dislocation density ρ in the initial CA
lattice is enforced. Example of generated microstructures
is presented in Fig. 1.

Two kinds of neighbourhood are defined in the pre-
sented CA model. The first is based on Moore neighbour-
hood and modified in similar way as proposed in [16].
Two diagonal members of the neighbourhood are re-
moved in a random manner. In consequence, the central
cell is always surrounded by six neighbours leading to
the pseudo-hexagonal neighbourhood (Fig. 2) [10]. This
neighbourhood was selected to obtain globular shapes of
growing nuclei due to reduction in influence of neigh-
bourhood shape and the anisotropy of the CA lattice. For
similar reasons the random factor was applied by other
researchers (e.g. [6-9]), but rather incorporated into tran-
sition rules.

The second type of neighbourhood, called “Distant
Neighborhood” (DN), is more sophisticated. It has fea-
tures not typical of the standard CA neighbourhoods. The
state of cells in the DN is not accessed directly by the
cells belonging to, but is presented to them as an average
value. The DN has its own internal state, which includes
average orientation and average dislocation density. The
number of cells in DN, denoted by ngr , may change in
time. If ngr > 0 then DN persists, otherwise it disap-
pears. Finally, the DN has no arbitrary topology and it
changes when the cells are attached to or detached from
the DN. The concept of DN, which represents grains

in the model, assumes interactions of longer range than
pseudo-hexagonal neighbourhood diameter. The interac-
tions include migration of dislocations and are connected
with mean free path of dislocations, which in turn de-
pends on the subgrain size. It is assumed in the model
that, for small recrystallized grains, the mean free path
is comparable with the grain size:

Fig. 2. The pseudo-hexagonal neighbourhood. The central cell (gray)
is surrounded by six neighbours (numbered squares), which are se-
lected by removal of random diagonal from Moore neighborhood. a)
the right diagonal removed, b) the left diagonal removed

D = 2

√
ngrSc

π
, (6)

where D – substitute grain size, Sc – area of CA cell
in DN. Non-uniform distribution of dislocation density
is another motivation for DN concept. The increment
of mean dislocation density is calculated at grain lev-
el, separately for each grain, using differential equation
[17]:

dρgr

dt
= A − Bρgr , (7)

where t – time, ρgr – average dislocation density within
the grain, A = ε̇

bl and B = k20ε̇
m exp

(
Qs
RT

)
– parame-

ters pertaining to hardening and dynamic recovery, re-
spectively, ε̇ – strain rate, Qs – activation energy of
self-diffusion, b – length of Burger’s vector, T – tem-
perature, R – gas constant, k20,m – parameters.

The average dislocation density calculated in a pre-
vious time step is used as an initial condition for so-
lution of equation (7). The dislocation density in the
cells belonging to the grain is then updated using ran-
dom function. Therefore, a nonuniform distribution of
the dislocation density within the CA lattice is obtained
in turn. It should be noted, however, that all interactions
between the cells remain local, i.e. there is still no global
data required for transition of the state.

The construction of state transition rules is decisive
for CA simulations. These rules have to enable simula-
tion of two components of recrystallization: nucleation
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and subsequent grain growth. The transition rules ap-
proximate the idea of DRX given in [18]. Despite the
rules itself are deterministic, the result of their applica-
tion is not deterministic due to quasi-random neighbour-
hood definition and distribution of dislocation density
in the CA lattice. Substantially, there are two transition
rules in the model. The first describes the nucleation and
is based on critical dislocation density criterion. The rule
states that the nucleus appears if the cell is located at GB
and dislocation density in the cell reaches critical value
ρc, given by the equation [19, 6]:

ρc =

(
20γε̇

3blMτ2

)1/3

, (8)

where γ – grain boundary energy, ε̇ – strain rate, M –
grain boundary mobility, l – mean free path of disloca-
tions, τ – average energy of dislocation line, b – length
of Burger’s vector.

Due to nonuniform distribution of dislocation den-
sity in grains, the value of ρ at the grain boundaries is
also nonuniform. Thus, it is possible to select the sub-
set of the sites in the CA lattice, in which the nuclei
occur. Such formulation requires neither calculation of
the nucleation probability nor nucleation rate, which is
advantage in comparison to the previous approaches. It
is assumed in the model that the random orientation is
assigned to newly created nuclei. The dislocation density
in the cell that becomes nucleus is set to ρDRX . Because
each grain is identified with a distant neighbourhood,
new DN is also created.

The second rule describes growth of recrystallized
grains. The rules that control grain growth are based on
calculation of velocity of GB motion v, which depends
on GB mobility M and the driving force for growth F:

v = αMF, (9)

where α is the scaling factor. The GB mobility is calcu-
lated from Shvindlermann equation [20]:

M = Mm

[
1 − exp

(
−B
θ

θm

)n]
, (10)

where θ – misorientation angle, Mm and θm are mobility
for high angle boundary and the misorientation angle
for high angle grain boundary, respectively, B, n – coef-
ficients. The temperature dependence of the GB mobility
is given by [21]:

Mm = M0 exp
(−Q

kT

)
, (11)

where M0 – constant, Q – activation enthalpy for GB
motion, k – Boltzmann constant, T – temperature. GB

energy is calculated from the Read-Shockley equation
[20]:

γ = γm
θ

θm

(
1 − ln

θ

θm

)
, (12)

where γm – GB energy for high misorientation angle θm.
The relationship describing driving force for grain

growth is derived from the work [6]. The main part of
driving force is connected with difference in dislocation
density between the current CA cell belonging to the re-
crystallized grain and the neighbouring cells belonging
to the deformed matrix ρi:

F = πD2τ (ρi − ρ) − 4πDγi. (13)

The substitute grain size D is calculated from equa-
tion (6). The distance variable x increment is evaluated
from the GB velocity:

∆x =
v∆t
S
, (14)

where ∆t – length of the time step, S – actual area of the
cell. The recrystallized volume fraction xrec is updated
by ∆x using threshold function, which ensures xrec 6 1.
The largest ∆x is used for estimation of the time step in
the CA simulation. The model predicts both the average
grain size and distribution of grain size. The list of DN
is analyzed regarding the grain size and the frequency
of occurrence is calculated for every class of sizes.

In this work the model is enriched with the module
that allows tracking of the selected phenomena in the CA
cells, such as: occurring of nucleus, change of assign-
ment to the grain, change of recrystallization level (i.e.
how many times the recrystallization occurred in the vol-
ume represented by CA cell) and change of assignment
to recrystallization cycle. The latter term is important in
the further work and is explained below. The counter C
represents recrystallization cycle and enables evaluation
of recrystallized fraction of every cycle. Let’s assume
that at every CA cell in the initial microstructure has a
counter C = 0. Any nucleus, which appears in the ma-
trix of counter C, is marked with C ← C + 1. Any cell,
which joins the grain with counter C is also marked with
C. In consequence, the counter C represents the gen-
eration of the grain and consecutive generations could
coexist in the material. In the further part of the work
the term “recrystallization cycle” means rather “belong-
ing to the generation C” than “material fully recrystal-
lized C times”. It is difficult to distinguish the grains
belonging to various recrystallization cycles in exper-
iments. Instead, the experimental data frequently refer
to the term of recrystallized fraction, which combines
recrystallized grains belonging to various cycles. Due to
additivity of recrystallized fractions for the coexisting
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cycles, the effective fraction of recrystallized material is
obtained from the model.

3. Results

Several calculations were performed to assess the
capabilities of the model. The attention was paid to eval-
uate the appropriateness of the connections between var-
ious outputs of the model, describing different aspects
of the model behaviour. The applicability of the model
is constrained by the assumptions described in previous
part of the paper. It should be noted, however, that the
results do not refer to any particular material. Instead,
the presented results show the abilities of the model to
reproduce some class of material responses or to meet
some criteria.

Two types of materials were considered. The first
is characterized by multi-peak flow stress curve (pure
copper is a typical example). According to the Sakai
structural criterion [18], an average grain size before
process D0 is related to grain size D after process as
2D > D0. The opposite criterion 2D < D0 is formulated
for materials characterized by single peak on the flow
stress curve, which are the second group of considered
materials.

The calculations were performed for nominal tem-
perature 1000◦C and strain rate 1s−1. The simulated sam-
ples were of radius 4 mm and height 12 mm. The process
was performed to the nominal strain of 0.67. The friction
coefficient between the sample and the tool was 0.05.

3.1. Multi-peak flow stress behaviour

The fraction of material belonging to consecutive
recrystallization cycles is shown in Fig. 3. The total re-
crystallized fraction is denoted with dashed line. The
coexisting recrystallization cycles are observed in the
material. Every cycle, except the first one, starts approxi-
mately at the inflection point of the curve for the previous
one. The multi-peak flow curve obtained from the model
is presented in Fig. 4a while idealized flow stress curve,
taken from paper [22], is shown in Fig. 4b. The effective
recrystallization fractions are also drawn in these figures.
In comparison to Fig. 3b, the flow curve presented in Fig.
4a is characterized by smaller amplitude and regularity
of the secondary peaks. However, good similarity of both
the flow stress and recrystallization fraction is observed
in Fig 4. The most distinctive points on these curves are
marked. In both cases xrec = 0.98 is achieved at the begin-
ning of the second oscillation. The oscillations observed
on the curve are closely related to the curves denoting
recrystallization fractions. Every recrystallization cycle
calculated by the model starts approximately at the end

of the previous cycle. This behaviour is confirmed by
the results in Fig. 4b.

Fig. 3. Fraction of material belonging to the consecutive recrystalliza-
tion cycles C=1 to C=5. Dashed line denotes the total recrystallization
fraction

Fig. 4. Flow stress and recrystallization fraction: a) obtained from
the model and b) idealized data (without units), based on [22]

Average grain size was calculated during the defor-
mation (Fig. 5). The line of D0/2 is drawn on the plot and
it is seen the results obey the structural criterion in [18].
The relation between flow stress and average grain size is
observed. While the overall tendency indicates decrease
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of D, the local oscillations are revealed, which coincide
with the peaks on the flow curve. The multi-peak flow
stress curve is often accompanied with grain growth.
The distributions of grain size in the material are tracked
during simulation of deformation process. The results for
selected strains are shown in Fig. 6. It is seen that at the
strain corresponding to finish of the peak on flow curve
(Fig. 4a), the microstructure consists of large amount of
small and medium grains. However, there are also grains
coarser than those observed in the initial microstructure,
which is the evidence of grain growth. The first peak
on the flow curve (Fig. 4a) contributes the coarse grains
to the microstructure (Fig. 5 and Fig. 6b). The overall
effect of increasing number of small and medium grains
is seen in Fig. 5 and Fig. 6c,d, but the grain size distri-
butions for consecutive strain steps show that the coarse
grains are preserved. On the other hand, the recrystal-
lized fraction shown in Fig. 4a suggests that the coarse
grains are continuously rebuilt, because the DRX is still
in progress. Thus, the onset of every DRX cycle is pre-

ceded by the growth of the grains nucleated in foregoing
cycle. This leads in turn to the growth of the selected
grains, which are unstable and will be replaced in the
subsequent cycles.

Fig. 5. Average grain size in the sample for multipeak flow stress
material

Fig. 6. Distribution of grain size for various strains: a) ε = 0, b) ε = 0.3, c) ε = 0.4, d) ε = 0.75
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Fig. 7. The results obtained from macroscopic part of the coupled
model: a) comparison between average stress calculated by CAFE
(open symbols) and flow stress obtained from the stan-dalone CA
model (filled symbols), b) compression force calculated by
coupled CAFE model

The comparison between average stress obtained
from the CAFE model and flow stress calculated by
stan-dalone CA model is presented in Fig. 7a. The dis-
crepancies in that figure are due to assumption of con-
stant strain rate and temperature during the the CA calcu-
lation. The compression force calculated by CAFE model
is shown in Fig. 7b. The results confirm the abilities of
the model to describe the macroscopic behaviour of the
deformed material.

3.2. Single-peak flow stress behaviour

The recrystallized fractions belonging to consecutive
cycles are shown in Fig. 8. The comparison of the flow
stress behaviour obtained from the model and idealized
one, taken from [22], is presented in Fig. 9. It is seen in
Fig. 8 that the grains of the second cycle appear almost
at the same time as the grains of the first cycle. This sug-
gests that the growth of the newly recrystallized grains is
inhibited by the fast nucleation on their boundaries, what
is source of the necklace structure [23]. The strong com-
petition between consecutive cycles is also observed up
to the fifth cycle. This can be caused by the grain refine-
ment, see Fig. 10f. The cycles become regular above the
strain of 0.4, which corresponds to the steady state on the
flow stress curve (Fig. 9a). The onset of DRX, marked
with xrec = 0.05, is more distinct for the data calculated
form the model. Fig. 9a and 9b reveal good agreement
between predicted value of recrystallization fraction xrec
= 0.98, which is observed in both cases at the finish of
the peak on the flow stress curve. The steady state flow
stress in Fig. 9a consists of multiple small oscillations,
which are also observed in Fig. 9b. The effective recrys-
tallized fraction curves in Fig. 9a are connected with the
oscillations on the flow stress curve. It should be also

pointed out that every effective recrystallized fraction
curve, except the first one, starts approximately at the
inflection point of the curve describing previous cycle.
Thus, the recrystallization cycles overlap each other.

Fig. 8. Fraction of material belonging to the coexisting recrystal-
lization cycles. The indexes C1 to C14 represents the recrystallized
volume fractions for consecutive cycles. Dashed line denotes the total
recrystallized volume fraction

Fig. 9. Flow stress and recrystallized volume fraction: a) obtained
from the model and b) idealized data (without units), based on [22]
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Fig. 10. Distribution of grain size for various strains: a) ε = 0, b) ε = 0.15, c) ε = 0.2, d) ε = 0.3 e) ε = 0.8 and f) plot of average grain
size in the sample

The grain size distribution during the deformation
is shown in Fig. 10a-e and the average grain size is
presented in Fig. 10f. The initial-to-final grain size ratio
is greater than 2 according to Sakai structural criterion.
The grain refinement is observed during deformation and
the finest average grain size are obtained for ε ≈ 0.25.
Steady grain size is observed for ε > 0.4. Comparison
of Fig. 10d and 10e reveals that final grains are coarser
than those at the end of the peak on flow curve.

3.3. Discussion

Despite the model predicts the distribution of grain
size, the volume fraction of ultra small grains seems to
be overestimated. This artefact of the model results from
the assumption that nucleus has to be a whole CA cell.
Since the cell is indivisible, the whole area of the cell
is taken in equation (6), which leads to inaccuracy of
the grain size distribution. The more nuclei appear in
the CA lattice, the more intensive is this negative effect.
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The overestimation of nuclei size is seen at the curves
of average grain size, as well. However, the structural
criterion of [18] is still satisfied. Thus, it is possible to
conclude that this source of inaccuracy should be re-
spected, but its influence does not affect the results to
the large extent.

The model offers subtle insight into mechanism of
dynamic recrystallization. The coexisting cycles of re-
crystallization are distinguishable, which is important
for the analysis. In comparison to the phenomenologi-
cal models, which use the percentage of recrystalliza-
tion as the only measure of DRX progress, this model
provides a substantial improvements. The percentage of
DRX reaches 100% for relatively low values of strain,
despite the process of DRX continues for larger strains.
The value of recrystallized fraction obtained from the
model seems to be more adequate to describe the actu-
al progress of DRX. The model is able to predict the
distribution of grain size. It should be emphasized that
the calculated distributions result from the model be-
haviour and are not directly given by phenomenological
equations.

4. Conclusions

The microscale CA model provides some improve-
ments in comparison to those already published (e.g.
[6-10]). The consistency with the theory of cellular au-
tomata is improved by the concept of the distant neigh-
bourhood and elimination of nucleation rate (or nucle-
ation probability) model. To the knowledge of the au-
thors, the idea of keeping the track of the grains belong-
ing to different DRX cycles was not presented before
in DRX models based on CA. The mutual feedback be-
tween CA and FE simulation which provides nonuniform
strain rates and temperature to the CA model, is another
advantage of the present approach. The FE method is
supported by simulation of microstructure development,
which enables accounting for nondeterministic phenom-
ena and non-continuous regions inside material, e.g.
grain boundaries. On the other hand, inhomogeneities of
strain rate and temperature, calculated by the FE, influ-
ence the progress of CA simulation of DRX. Eventually,
the integrated CAFE model provides information about
both thermo-mechanical and microstructural properties
of the material for massive samples.
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