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AUTOMATED ASSESSMENT OF SCRAP QUALITY BEFORE LOADING INTO AN EAF

AUTOMATYCZNE SZACOWANIE JAKOŚCI ZŁOMU PRZED ZAŁADUNKIEM DO EAF

The quality of steel scrap, to be used as the main feedstock for an electric arc furnace, is automatically assessed by a

system developed for continuous monitoring of the scrap basket charging process. At the ArcelorMittal Differdange plant’s

scrap yard, four digital cameras combined with four laser distance scanners, installed on the gantry cranes, record pictures of

every deposited scrap layer and scan their height distributions within the baskets. Machine-controlled image quality detection,

followed by contour measurements and granulometry evaluation, up to automated scrap grade classification deal with the

visual aspects of the charged materials. This knowledge is combined with information received from the scanners in order

to determine the basket filling ratios and scrap densities. In order to avoid basket overfilling the total scrap volume is also

monitored with this technique. Relating the height profile measurements to the loaded weights gives a direct assessment of the

density of each scrap layer and grade.
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Jakość stalowego złomu, który jest wykorzystywany jako główny materiał wsadowy dla pieców łukowych, jest ustalana

automatycznie dzięki zastosowaniu systemu ciągłej kontroli jakości złomu. Na złomowisku zakładu ArcelorMittal Differdange

zainstalowano cztery cyfrowe kamery połączone z czterema skanerami laserowymi. Rejestrują one każdą dostarczoną partię

złomu i określają jego rozkład w koszu załadunkowym. Wizualna analiza konturów oraz oszacowanie granulacji pozwala

natychmiast określić jakość porcji złomu. Wiedza ta połączona z informacjami uzyskanymi ze skanerów pozwala określić

współczynnik załadunku kosza i gęstość złomu. Celem zapobiegania przeładowania kosza tą samą techniką monitorowana jest

także całkowita ilość złomu. Porównując zmierzoną wysokość z załadowaną wagą złomu można prosto wyznaczyć gęstość

każdej warstwy złomu oraz jego rodzaj.

1. Introduction

In order to improve the operations of electric arc

furnace based steelmaking and the scrap recycling ra-

tio, ArcelorMittal, in collaboration with CRM, and oth-

er RFCS partners, is currently developing a system for

online monitoring of the scrap charging process into the

baskets. Scrap grade characterisation is of high impor-

tance, not only to control the liquid steel composition,

but also to ensure reliable melting conditions. Scrap must

be layered inside the basket according to its size distri-

bution and density in a way to allow rapid formation of

a liquid pool of steel in the EAF vessel, while providing

protection for the sidewalls and roof from arc radiation.

In order to monitor this loading process at the scrap

yard of the Differdange plant, gantry cranes have been

equipped with sensors for digital imagery and height

distribution measurements of each deposited scrap layer.

Together with already available weight measurements,

every layer of scrap, transferred by the crane from the

scrap stock piles, or railway wagons, into the basket,

is analysed in terms of its visual aspect, granulometry,

and density. This part of the system, already in industrial

use for over one year, is applied for operator training and

supervision of scrap charging practices. Making the con-

nection between every basket load, consisting of up to 20

different layers with various scrap qualities, and its char-

acteristics to the actual performance of the furnace, will

allow optimising the charging practice. Figure 1 shows

the schematic layout of the system with four sensor units

monitoring four scrap baskets. Figure 2 shows a photo-

graph of two units attached to one gantry crane. Besides
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a short description of the installed system, this article

focuses on our data processing work in order to extract

useful information on the grade, quality and density of

the charged scrap.

2. Description of the data acquisition system

As shown in figures 1 and 2, the two charging cranes

are equipped with two sensor units each, mounted above

the tracks which carry the 100 ton scrap baskets. Since

the Differdange plant uses a dual shell EAF, up to four

baskets may be loaded at the same time.

Fig. 1. Schematic layout of the system using four sensor units to

monitor four baskets

Fig. 2. Photograph of two sensor units attached to one gantry crane

Each sensor unit consists of a medium resolution

colour digital camera, a precision laser distance scanner,

and a powerful light projector used during night oper-

ation. Each time a layer of scrap is deposited by the

crane, using its grab or magnet, into the basket the cam-

era records a digital picture of this layer. Furthermore

the laser distance measuring device scan across the di-

ameter of the basket, recording a height profile of the

currently charge scrap pile. The data from all devices

are transmitted via wireless LAN system to a central

PC used to remotely control the complete system. This

PC further records other important information, such as

scrap weights continuously transmitted from the basket

carriers, and positions of the crane along the scrap yard

and its trolley. Using these data, values on scrap density

can be calculated, and the position values allow a track-

ing where the scrap was picked up and in which basket

it was loaded. A typical sequence of loaded scrap layers

into one basket is shown in figure 3.

Fig. 3. Beginning of a scrap loading sequence for one basket

A lot effort was put into the development of the

rather complex system control software, the most critical

part being the correct synchroni-sation between image

and scan acquisitions and the movements of the cranes,

trolleys and baskets. Furthermore a user-friendly visu-

alisation of all scrap layers within one basket load was

prepared in order to help the operator and the process

engineer to identify ‘problematic’ inputs to the furnace,

such as ‘wrong scrap type in wrong layer’, ‘very heavy

scrap piece’, or even ‘dangerous scrap piece’ (ex. hollow

body).As an example figure 4 shows a typical display

used during software development for checking the cor-

rect functioning of the system.

Fig. 4. Development screen of system control software
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3. Pre-processing of the scrap layer images

Besides the ‘manual’ visual inspection of the col-

lected scrap layer images by operators, new techniques

have been developed to automate the scrap characterisa-

tion process. In a first step digital image processing is ap-

plied to extract information about scrap size distribution

and granulometry. Once this information is available,

charged scrap types may be automatically identified, for

example by using artificial neural network classifiers.

Although a lot of effort was made to correctly trig-

ger the cameras and scanners, from time to time erro-

neous data are recorded, mainly because of the numer-

ous moves of both the cranes and the baskets during the

charging process. Here the crane grab or magnet may

cover up the underlying scrap layer in the image, or the

image can be ‘foggy’ because of large quantities of dust

emerging from the basket immediately after the charging

of a new scrap layer. Before any automated classification

can be made, it is crucial to eliminate all those images.

In a first step a correct region of interest (ROI) with-

in the images must be defined in order to further analyse

only the scrap related parts of the pictures. Since both the

scrap baskets and the gantry cranes move during loading,

the basket contours are not always well centred within

the image. Therefore software routines were developed

to automatically identify the position of the scrap baskets

after the recording of each picture, followed by cropping

to the ROI which only contains scrap parts, exempt from

boundary effects, such as the edge of the basket or even

parts outside the basket.

For this purpose we adapted an algorithm, pro-

posed within the MATLAB R© ‘Image Processing Tool-

box’ (IPT) [1], based on normalised 2D cross-correlation

[2] for feature extraction. In short, this technique consists

in defining a (small) template image that is supposed to

appear in all the images to be analysed and to find, or

recover, this template and its position within the original

image. Since in our case the goal is the precise location

of the baskets within the images recorded by the four

cameras installed on the loading cranes, the template(s)

used are extracts of the images containing parts of the

upper edge of the basket. Once the template is located

within an image, the actual position of the centre of the

basket is easily calculated, and a ROI may be defined

around this centre. In our recorded scrap pictures, the

basket may be either shifted towards the top or the bot-

tom of the image, or may be well centred. In the later

case neither the top nor the bottom boundary of the bas-

ket may be visible.

A further difficulty is the fact that the image con-

trast and colours strongly depend on the lighting con-

ditions (day/night, sunshine/cloudy). Therefore we have

Fig. 5. Scrap/basket image with overlaid template and ROI

selected eight different templates, taken from different

pictures, reflecting different parts of the upper basket

edge and different contrast values. Every new image is

cross-correlated with the eight predefined templates, tak-

en at different locations on the basket rim, and the one

with the highest peak in the cross-correlation function

is retained. The x- and y- values of the correlation peak

automatically indicate the position of this template as

recovered in the new image. From these coordinates the

centre of the basket is determined and an ROI is defined.

Because of the slightly off-axis viewing directions of the

camera into the round baskets, this ROI was defined as

an elliptical section, resulting in a maximum size usable

area. An example scrap/basket picture, together with an

overlaid basket edge template and the position of the

corresponding ROI is shown in figure 5. Once the full

image is cropped to this ROI, the resulting picture will

be further processed. Figure 6 shows all the processing

steps from a raw scrap layer picture to the cropped im-

age. Here template N◦6 gave the best fit for locating the

position of the basket.

Fig. 6. Template 6 gives the highest correlation for a basket, centred

laterally but slightly shifted towards the top of the image
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As mentioned earlier, images showing a large

amount of scattered dust, rising from the basket dur-

ing loading (dry scrap during summertime) and mask-

ing most of the underlying scrap, are problematic for

further extraction of scrap characteristics. Since these

dust clouds (or fog) show a certain texture, contour al-

gorithms, depending on their sensitivity, will detect fake

edges which may be interpreted as large scrap pieces,

similar to those encountered in industrial demolition or

internally recycled scrap from a rolling mill. Therefore

it is important to automatically detect these images and

eliminate them before the scrap classification process.

Dust loaded, or foggy, images show a typical ‘grey

in grey’ texture and their overall and local image grey, or

intensity, values vary rather smoothly. Clear and sharp

pictures of scrap pieces show a much coarser (industrial

demolition, sheared) or a finer (shredded, turnings), but

regular texture. Therefore statistical methods, for obtain-

ing regional descriptors of the images, seemed to be a

good approach to discriminate between foggy and clear

images [3]. It turns out that the calculation of the lo-

cal standard deviations of the grey values gives a good

indication on the ‘usability’ of an image for further pro-

cessing.

The function ‘stdfilt’ (MATLAB R© IPT) [1] pro-

duces an output image where each pixel contains the

standard deviation of the 3-by-3 neighbourhood around

the corresponding pixel in the input image. Larger neigh-

bourhoods should not be used; otherwise images of very

fine scrap parts, e.g. steel turnings, may yield standard

deviation values similar to the ‘foggy’ images. The sum

of the standard deviation values over the full image ma-

trices is calculated and the corresponding values for fog-

gy and clear images of different scrap types are com-

pared, as shown in the following figures. In our case,

where all images were cropped to the same size, fog-

gy images show much lower summed standard deviation

values than the values obtained from clear images of

different scrap classes, as shown in figure 7.

Fig. 7. Distributions of summed local standard deviations

4. Image processing for automated scrap type
identification

After correct cropping and elimination of bad quali-

ty images, the next step of processing consists in contour

extraction in order to detect the size distribution of the

loaded scrap pieces and to define their granulometry.

This technique, previously reported [4], again uses stan-

dard MATLAB R© IPT routines [1], where the ‘Canny’

contour detection algorithm works best for these images.

Fig. 8. Image processing steps for contour extraction and granulometry calculation
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A so called ‘granulometry’ distribution is calculated by

successively applying a morphological opening of the bi-

nary contour image with a structuring element, which in

our case is a disk with increasing radius. Such an image

processing sequence is shown in figure 8. The compu-

tation of the change in surface area between each image

opening step (‘loss of pixels’) yields a distinct granu-

lometry distribution for every scrap grade, as shown in

figure 9.

Fig. 9. Average granulometry distributions for four scrap grades

5. Automated charged scrap grade classification

In order to closely follow up what kind of scrap was

charged in practice for every layer and compare this in-

formation with the scrap mix predefined ahead for each

heat at the EAF, it may be useful to automate the scrap

identification process, also because of the large num-

ber of collected images. This problem was successfully

solved with the help of a probabilistic neural network

classifier (PNN) [5, 6], as shown in figure 10. The input

layer consists of 36 units for radius data and number of

Fig. 10. Probabilistic neural network classifier

TABLE 1

Classification obtained with the PNN

39322PNN : Shredded

74500PNN : Turnings

01392PNN : Industrial

demolition

41946PNN : Sheared

Shredded

(50)

Turnings

(50)

Industrial

demolition

(50)

Sheared

(50)
Confusion

matrix

39322PNN : Shredded

74500PNN : Turnings

01392PNN : Industrial

demolition

41946PNN : Sheared

Shredded

(50)

Turnings

(50)

Industrial

demolition

(50)

Sheared

(50)
Confusion

matrix

connected objects issued from the granulometry distribu-

tions. The layer of radial units stores pattern exemplars,

taken directly from the training data. Finally the layer

of linear classification units sums the outputs of pattern

exemplars for each class and constructs an estimate of

the probability of membership of that class.

The obtained classification results are summarised

in table 1. Images of 50 samples each from four different

scrap grades have been processed and their data fed to

the classifier. The main diagonal of the confusion matrix

shows the number of correctly identified samples.

6. Height scan processing for scrap density
assessment

The scrap level distribution in the basket is assessed

by means of laser-based scanner measurements. Trig-

gered at the same time as the corresponding camera, the

scanner performs a complete scan within one second,

each scan containing 360 measuring points in a 180◦

linear angle (figure 11). Each scan carries on distance

measurements from the scanner to the physically inter-

cepted points, here mainly the scrap basket located on

its tracks.

Fig. 11. Scanning operation during the charging phase
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An example of a basic scan is given in figure 12,

the red marked discontinuous circles showing the area

limited by the basket in the global signal. Processing of

the raw scans is necessary in order to extract the height

profiles of the scrap layers in the basket. A special scan

data analysis algorithm has therefore been developed,

with the objective to automatically extract these height

profiles.
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Fig. 12. Complete scan of the basket before processing

For each scan, the representative zone of the basket

(blue squares in figure 13) has to be extracted from the

global signal after elimination of parasitic values and

basket edges. A so-called scrap profile is obtained. The

scan is then further processed to get the average scrap

level. The average scrap level is finally transformed in-

to volume (knowing the basket geometry) and combined

with the scrap weight signal to measure the scrap density

of each scrap layer and grade.

The described monitoring system is able to follow

the whole basket loading phase leading to the evaluation

of the volume of each layer of scrap. The total scrap

volume is also monitored with this technique in order to

avoid overfilling. The drawings in figure 14 illustrate the

evolution of the scrap height profiles as measured by the

scanner during the charging sequence (60 ton basket,

Fig. 13. Extraction of the useful data area from a scan

scrap mix 20). On the left-hand side the successive

height profiles are shown, whereas the drawing on the

right-hand side indicates the corresponding averaged

heights. The lower level measured after charging of a

so-called the ‘YT’ scrap grade (anthracite, dust and/or

sand) illustrates the complex interactions between suc-

cessive layers of material, such as ‘settling-down’ of the

previous layers and filling-up of cavities.

Two campaigns of measurements have been car-

ried out at the ArcelorMittal Differdange plant and a

database of density values per class of scrap is current-

ly being built. Statistics have been performed on this

database. Figure 15 shows the averaged densities of dif-

ferent scrap grades, as measured with the monitoring

system, in comparison with the European specifications.

Light scrap grades (E1 and E8) have averaged density

values of about 0.65 t/m3, while heavier scrap grades

show densities close to, or higher than, 1 t/m3. Global-

ly, these averaged densities appear to be in quite good

accordance with the European recommendations. The

averaged density of a complete basket (first or second

basket) was estimated to 0.75 t/m3, with values ranging

from 0.5 t/m3 and 1.5 t/m3.

Fig. 14. Evolution of the height profile during the charging phase and the corresponding averaged height of scrap after scan processing
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Fig. 15. Averaged scrap densities determined for each grade

While their averaged densities may show good

trends, some scrap qualities are characterised by large

fluctuations. This is clearly the case for the new light

scrap (E8 grade) that normally charged as a first layer in

the basket. Figure 16 illustrates the relationship between

the scrap volume and its corresponding weight.

Fig. 16. Relationship between scrap volume and scrap weight for the

‘NL’ scrap grade
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Fig. 17. Scrap volume evolution during the charging phase

Each point on the graph represents the sum of all

successive layers of the “NL” scrap grade Density varia-

tions ranging 0.25 t/m3 to 1.5 t/m3 have been observed,

leading to the conclusion that this particular scrap grade

does not fulfil standard basic requirements (‘NL’ density

> 0.4 t/m3).

Moreover, a very interesting result, obtained with

this scrap monitoring system, was the pinpointing of the

influence of the light scrap on the charging pattern and

on the total height of scrap pile in the basket. The graph

of figure 17 shows the evolution of the scrap volume over

the basket charging phase. As previously described, the

large density range of the ‘NL’ scrap grade induces a

large scatter in the final volume of scrap.

The trends in the volume increase are nevertheless

reproducible, indicating that some rules of basket charg-

ing can be defined in reference to the grade of scrap be-

ing charged. This means that the charging pattern may

be modelled, giving to the crane/charging operators a

device able to assess dynamically the final filling level.

7. Conclusions

The first analysis of the scrap images and the densi-

ty values database illustrates the consistency of the mea-

surements performed by scrap monitoring system. While

the assessment of densities for each scrap grade charged

for the EAF is useful per se, the appraisal of the final

charging volume requires nevertheless the knowledge of

the complex interactions between the different scrap lay-

ers. The developed system proved its ability to achieve

the goals of automated scrap charge monitoring.
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