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MODEL EFEKTYWNY MATERIALOW KOMORKOWYCH W ZAKRESIE
LINIOWO-SPREZYSTYM

The aim of this paper is to formulate an effective anisotropic continuum for cellular
materials based on micromechanical modeling. It corresponds to recent trend, of searching
for advanced materials tailored to special requirements, which is based on intrinsic relation
between structure and macroscopic properties. Open-cell materials with diverse structures
representing different types of symmetries are considered. It is assumed that essential macro-
scopic features of mechanical behaviour can be inferred from the deformation response of
a representative volume element. The structural mechanics methods are applied for a beam
model of skeleton. An analytical formulation of force-displacement relations for the skeleton
struts is found by considering the affinity of nodal displacement in tensile, bending and shear
deformations. The concept of multiscale modeling leads to formulation of equivalent con-
tinuum as an effective model. Such an approach is typical for micromechanics. The stiffness
tensor may be produced for anisotropic solid depending on material properties of the solid
phase and topological arrangement of a cellular structure using the micro-macro transition.
The analysis based on the assumption of linear elasticity leads to the analytical solution.
Graphical representation of choosen material constants is performed. The possibility to
model the influence of morphology and topology parameters is studied.

The proposed theoretical framework of micromechanical modeling can be extended to non-
linear behaviour, plasticity and failure analysis. For such problems numerical approach is
required.

Keywords: cellular materials, anisotropy, effective model, micromechanical modeling,
elasticity

Poszukiwanie nowych wielofunkcyjnych materialéw odpowiada najnowszym tenden-
cjom tworzenia materialéw o zalozonych z géry wlasno$ciach w tym réwniez wlasno$ciach
mechanicznych. Takie modelowanie oparte jest na znajomosci relacji pomigdzy strukturg
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wewnetrzng a wlasno$ciami materialu w skali makro. Ustalenie tych relacji jest podstawo-
wym zadaniem, ktérego rozwigzanie prowadzi do skonstruowania modelu efektywnego.

Obiektem rozwazari sa materialy komérkowe o komérkach otwartych, ktére tworzg
szkielet mikrostruktury o regularnym przestrzennym ukladzie oraz pianki charakteryzujace
si¢ uktadem nieregularnym. Wiasno§ci mechaniczne takich struktur mozna wyznaczyé w
oparciu o szczegftowa analiz¢ komérki reprezentatywnej, z postaci ktérej mozna wnio-
skowa¢ o symetrii materialu. W pracy zastosowano typowa dla mikromechaniki koncepcje
modelowania dwuskalowego, ktéra prowadzi do sformutowania continuum zastepczego jako
modelu efektywnego. Analize kinematyczna w strukturze przeprowadzono przy spostrzeze-
niu podobieristwa przemieszczen wzglednych komérek dla jednorodnych stanéw odksztatceri
materiatu w skali makro. Szkielet struktury modelowano jako belke Timoshenki wyprowa-
dzajac relacje sita-przemieszczenie w szkielecie poprzez sztywnoéci osiowe i gietne belek.
Dla okre$lenia naprezenia efektywnego continuum zastosowano definicje urednionych na-
prezen rzeczywistych w szkielecie. Powyzszy algorytm pozwala wyznaczyé sktadowe tenso-
ra sztywnosci dla materiatu anizotropowego jako funkcje sztywnosci elementéw sktadowych
i parametréw opisujacych geometrie komérki reprezentatywnej.

Praca zawiera prezentacj¢ graficzng wybranych stalych materialowych dla poszczeg6l-
nych struktur ze wskazaniem na mozliwo§¢é modelowania wskazanych wiasno$ci sprezystych
materiatu.

1. Introduction

Highly porous materials with cellular structure exhibit many interesting combi-
nations of physical and mechanical properties such as high stiffness in conjunction
with very low specific weight. For this reason they are frequently used to fulfill con-
structional and functional purposes. The development of mechanics of cellular solids
is documented by Gibson and Ashby [1]. Banhart [2] gives detailed description of
manufacturing possibilities and diversity of applications. Cellular materials are finding
an increasing range of applications in light-weight construction, crash energy absorp-
tion, aerospace industry, shipbuilding, sporting equipment, biomedical industry. These
materials also exhibit properties which suggest their implementation as multifunctional
materials [3] for such applications as cooling devices, heat exchangers, silencers, filtra-
tion, transfer of liquid, flame arresters, acoustic control. Cellular solids are materials
made up of an interconnected network of cells with solid strut edges. The cell faces
can be open or covered by plates or membranes. Distinction is made between open and
closed cell materials, which are inherently different. Searching for new multifunctional
materials corresponds to recent trend of searching for advanced materials tailored to
special requirements [4, 5, 6]. The empirical development of such materials by trial
and error may be very time consuming and expensive. An essential step toward imple-
mentation comprises structural analysis. Advanced modeling of materials relies on the
intrinsic relation between structure and properties. Establishing this relation is a chal-
lenge for researches. Fundamental studies of phenomena on a micro-scale are necessary
to explain the macroscopic behaviour of such structured bodies. The overall effective
properties are determined by certain considerations using micro-macro transition. It
is related to effective model construction [7, 8, 9]. The effective properties are then
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used to determine the response of structural elements on a macro scale and emerge
naturally as a consequence of micro-macro relations without depending on specific
physical measurements [8]. This method, typical for micromechanics, has been applied
to aluminum foams [10].

2. Micromechanical analysis

2.1. Representative unit cells for different microstructures

Our interest is focused on typical cellular materials with skeleton structures shown
in Fig. 1.

2} <)

b) 3-dimensional foam with equal cells

d) ©

Fig. 1. Examples of 3-D cellular structures, which may be described by the present formulation

Formulation on a micro level begins by identifying the unit cell of the spatially
periodic array or volume. Thin lines identify the volume within the symmetry planes
surrounding the part of the skeleton (thick line) inside the unit cell. Unit cells have
the property of filling space by appropriate repetitions of themselves when mirrored
and inverted about the faces of the element in all directions without introducing gaps
or overlaps. Cells satisfying these conditions composed of four, six or eight members
converging into a node (rigid joint) with the description of cell geometries are shown
in Fig. 2. These unit cells correspond to structures given in Fig. 1.

An open-cell microstructure is represented by unit cell with a part of skeleton
having half struts of length Zo-i/,. The unit cell position is considered with respect to
the assumed coordinate system having the origin at vertex 0. The strut midpoints are
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described by the position vectors b%i = 1,...n where: |[b?| = Zo-i/,. Representative
volume element V has face areas A; perpendicular to struts i.

a) { Z b) Z c)

o N

Fig. 2. Representative unit cells and their symmetries for the given microstructures: a) cubic cell, cubic
symmetry; b) foam cell, cubic symmetry; c) rectangular prism, orthotropic symmetry; d) trigonal prism,
transversely isotropic symmetry; e) hexagonal prism, transversely isotropic symmetry

2.2. Strain and stress measures for linear elasticity
The unit cell is treated as a model on the basis of which effective relations between

strains and stresses are established. These strains and stresses are defined as volumetric
averages of the micro field variables [8], which are defined as given below:

1
e={ey = % Z sym(n; @ u;)ds, o ="y = v Z (t; ®n;)dS ¢))]
A; A;

where: ()y stands for the volumetric average in skeleton s taken over V, n; is the outer
unit normal on the boundary A; and u; and t; are respectively the midpoint displacement
on the surface A; and surface traction defined as follows: #; = * i/a,-
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This means that strains and stresses are measured using the unit cell’s surface displace-
ments and tractions, respectively.

A representative volume element with its mechanical model is used to determine the
effective properties using the principles mentioned above on a micro-scale together
with the assumption of uniform strain and stress state.

2.3. Kinematics

The essential feature of uniform deformation of solids with repetitive microstruc-
ture is node displacement affinity. The spatially periodic nature of the cell array requires
that the individual beams deform antisymmetrically about their midpoints, so there is
no resultant moment across the section at the beam midpoints. An example of such
deformation is shown in Fig. 3.

Fig. 3. Example of uniform deformation

The kinematics of the unit cell is described by the relative displacements of the
beam midpoints with respect to a rigid motion of the junction point (vertex). This rigid
motion is described by the translation component A, and spatial rotation ¥. As a result
relative midpoint displacement with respect to node is given by the following formula:

A,'_o = A,' - Ao -¥x bo i= 1, PR ( X (2)

Note that only this relative deformation produces forces in microstructure skeleton.
The uniform axial deformation results in the motion of the beam midpoints which may
be described as written below:

Ai(ga) = 62 (b - €a) € i=1,..n @)

for subsequent uniaxial extensions &, in the « direction @ = x,y,z.

For pure shearing deformation in the @8 plane a # B the displacements are given
as follows:

Ai(epl2) = (vapr2) - (b9 - ec) es + (b2 €5)es)  i=1,.m. @



600

The location and rotation of the junction point is determined by enforcing cell equi-
librium:

iF,:o iF,-xb?:O. (5)
i=1 i=1

Relative displacements may be represented by the components normal and tangent to
the individual strut direction

Ao-i = Ao-ipn + Ao-ir, (6)
where displacement components can be obtained using the following formula:
Ao-in = (Ao-i - €) € Ao-ir = (&; X Ag-;) X &;. @)

The deformation mechanisms mentioned above have been confirmed by calculations
performed using ROBOT FE software (FE beam discretization).

2.4. Displacement-force relations

Timoshenko beam model is adopted as the most appropriate for short beams of the
typical microstructure skeleton where shear deflections of beams should be considered.
For a low density structures with long slender struts Bernoulli-Euler beam theory is
sufficient. At this level the non-uniform morphology may be accounted for. It refers to
the case where the transverse strut dimension varies along the centerline axis with the
maximum value at the joint to the minimum at the midpoint.

The elastic behaviour of cantilever beam subject to axial and transverse loads is known
from classical solutions. The appropriate differential equations together with boundary
conditions are quoted in [10].

For axial load F;, and transversal load F;;, applied at the end of cantilevered beam, its
free end axial displacement A;_q, and transversal displacement A;_g, may be described
by linear relations with respect to fixed end:

Ao-in = FinCin Aoir = FirCir, ®)

where: c;, is defined as beam axial elastic compliance of strut i
¢;r is defined as bending elastic compliance of strut i having the length Lo-,.
For uniform beam cross-section the solutions are as follows:

_ Lo-i - L, + Lo-;
2EsA T 24E¢] 2GsA;’

Cin 9)
where: A — cross-sectional area

E;G; — Young and shear modulus for the skeleton material.
For slender strut modeled using the Bernoulli-Euler beam model deflection depends
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Fig. 4. Cantilevered beam representing microstructural element

only on distribution of bending moments. For Timoshenko beam additional displace-
ment component related to shearing stress should be included. It may be determined
by solving equations quoted in [10]. For such a model bending elastic compliance
is a sum of two components. The first one corresponds to Bernoulli-Euler beam re-
sponse whereas the second one is related to shearing strains present in Timoshenko
beam.

For nonuniform cross-section elastic beam compliances are functions of microstructure
morphology.

Axial and bending stiffnesses of beams are given by inverts of compliances:

Sin = (cin)_1 » Sir = (ci'r)—l . (10)

When the stiffnesses are determined, one may calculate the normal and transver-
sal forces as functions of unknown nodal rigid motions using force-displacement
relations. The displacement and rotation components may be obtained from equi-
librium equations (5). The solution supplies full description of deformation mecha-
nism.

2.5. Effective elasticity tensors

The forces obtained in such a way make the calculation of stresses in an equiva-
lent continuum possible following the definition (1). Six types of specific deformations
related to subsequent strain tensor components being non zero one at a time are con-
sidered (3), (4). As a result of the analysis the effective constitutive matrix for the unit
cell is constructed.

For the given types of symmetries the elasticity tensors in Kelvin notation [11, 12] are
given in Appendix.

Nonzero components of elasticity tensor are given in Table 1. Generally theses com-
ponents are functions of structural element stiffnesses and geometrical parameters of
representative volume elements.

Note that the effective properties are dependent not only on relative density but also
on strut morphology both in cross-section and variation along the strut length.

All the obtained results are compatible with those available in literature [19].
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3. Graphical representation of the anisotropic linear properties

The generalized Hooke law for anisotropic material can be given by 4-th order
stiffness tensor S or compliance tensor C or equivalently by two scalar functions, which
uniquely determine anisotropic linear elastic behavior. These functions represent Young
modulus and generalized bulk modulus depending on direction of tension in a tension
test [15]. This latter description is very useful, since tensile test is the most frequent
test determining elastic anisotropy experimentally. Special applicability of anisotropic
materials requires the capability to visualize their properties. All directions in R3
can be parametrized by spherical coordinates {r, ¢, ¥} with r = 1. Young modulus or
generalized bulk modulus can be effectively represented by means of spherical polar
diagram, i.e. with a surface generated by a vector whose length is proportional to the
value of modulus in the direction indicated by the vector itself.

Since the dependence of macroscopic properties on Young modulus of the skeleton
material is linear it is useful to show dimensionless plots.

For properties such as shear modulus and Poisson’s ratio only planar representation is
possible and it is drawn in chosen planes.

Geometric parameters of skeleton structure are chosen in a way that avoids buckling
(struts are not overly slender) and Timoshenko beam theory is valid (struts are not
overly thick).

3.1. Young’s modulus and generalized bulk modulus

A tensile test is represented by an uniaxial stress state having tensile direction n.
Young modulus E (n) definition as the ratio of tensile stress to tensile strain leads to
the following formula [12, 15]:

1
m:(ngn).c-(nean), (11)

where: n normalized vector specyfing the tensile direction in a tension test

Note that the expression g5 corresponds to elastic energy [14] stored in a body
subject to uniaxial stress state ot) a unit value. This allows for the interpretation of the
directions corresponding to extremes of Young’s modulus as directions of maxima and
minima for the stored energy function. Maxima are oriented along directions parallel
to the skeleton struts as a consequence of axial stiffness exceeding the bending stiffness
in structural elements.

Calculations are performed for the following geometric data:

a) L=15+10"%m, R=9.375%10"%m

b)L=15%10"%m, R=10%10"m

)L, =15%10"m, L3_4 =255+ 107*m, H = 27*10‘4m R=137+10"m
d) thick structure: L = 1.5 % 10™*m, H = 2.0 % 10%m, R = 1.35% 10™m
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d) slender structure: L =1.5% 10"%m, H =2.0% 10~*m, R=0.5* 107m
e)L=15%10"%m H=20%10"%m, R=135%x10"m

where: R is radius of the uniform circular beam cross-section.

It yields the plots presented in Fig. 5.

a) ¢
F1.0 )

0.5

b) for isotropy the plot is 2 unit sphere

d) thick structure d) slender structure

H.0 F1.0

Fig. 5. Graphical representation of dimensionless Young’s moduli

Generalized bulk modulus K (n) is defined as one third of the ratio of a tensile
stress and the trace of the strain tensor [15]. The quantity El?l(n_) represents the relative
change of volume per tensile unit stress in the direction n and can be obtained using
the following formula:

1
3K (n)

Calculations are performed for the same geometric and material data as previously. It
gives the plots presented in Fig. 6.

Minima are directed along directions parallel to the skeleton struts as a conse-
quence of axial stiffness being greater than bending stiffness for structural elements.

=I-C-n®n). 12)
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b) for isotropy the plot is a unit sphere
d) slender structure €)

Fig. 6. Graphical representation of dimensionless generalized bulk moduli

3.2. Poisson’s ratio and shear modulus

Poisson’s ratio in the direction m perpendicular to the direction of tension n is
defined by the following formula [12]:

—v (n, m)

W:(n®n)-c-(m®m). (13)

Considerations in xy plane for a honeycomb made of square or rectangular cells, yields
a plot typical for all structures in xz or yz planes. For structures d) and €) the plot is
circular as can be expected for transversal anisotropy. Since the typical honeycomb d)
is more compliant, its Poisson’s ratio is greater than for honeycomb e).

Calculations are performed for data given previously.
Shear modulus for two perpendicular directions can be obtained by the formula:

1
m:(n@m)-C-(n@m). (14)

Plots for similar cases as for Poisson’s ratio are given in Fig. 8.
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Fig. 7. Graphical representation of Poisson’s ratio for XY plane (o is defined as angle with direction n)

a),¢) d) c)
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Fig. 8. Graphical representation of shear modulus plane (e is defined as angle with direction n), a)XY
plane, d)e) XZ plane

4. The topological design

Detailed study based on described examples leads to the conclusion, that responses
in skeleton structure are fundamentally related to bending and stretching deformations.
Cellular systems that bend are subject to high local stresses which make the system
compliant and result in low yield strength. Conversely when the cell walls stretch with-
out bending the system is stiff and exhibits high strength. Thus, from the structural
perspective skeleton structure of the type e) is by far superior to all other configura-
tions, since only it works during shearing deformation without bending of structural
elements. Skeleton structure of the type d) is very compliant because bending occurs
during every possible uniform deformation.

Topological design including the choice of microstructure type is responsible for macro-
scopic distribution and directional dependence of properties.
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5. Conclusions

An advantage of this method lies in the fact that the macroscopic constitutive model
follows readily from the analytical treatment. Such studies are paramount for efficient
material design where new materials are developed with a microstructure modified in
such a way that specific macroscopic requirements are fulfilled. The proposed theoret-
ical framework of micromechanical modeling can be extended to nonlinear behaviour,
plasticity and failure analysis. For such problems numerical approach is required.
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6. Appendix

Stiffness matrices for the considered types of symetry.

a) cubic symmetry:

- S1n
§1133
S = 51133
0
0
0

b) isotropy:

S1111
§1122

S1122
S
0

0
0

51133
S1111

§1133
0

0
0

S1122
S1111

S1122
0

0
0

¢) orthotropy:

[ S1111
$1133
S = $1133
0
0
0

d), e) transversal isotropy:

S
51133

$1133
S
0

0
0

§1122
§2222

§2233
0

0
0

51122
S1111

§1133
0

0
0

$1133
51133
S

$1122
S1122
S1111

§1133
§2233

$3333
0

0
0

§1133
51133

§3333
0

0
0

0 0
0 0
0 0
2533 0
0 25033
0 0
0
0
0
Si111 — S22
0
0
0 0
0 0
0 0
25533 0
0 25313
0 0
0 0
0 0
0 0
2503 O
0 2533
0 0

S O © O

(=

257323 |

S © O

0

S1111 — 81122
0

o O o C

0
251212 |

o O o o

0

Si111 = S1122 |

S O O O

0

S1111 — S1122 |
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