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OPTIMIZATION OF MATERIALS PROCESSING USING A HYBRID
TECHNIQUE BASED ON ARTIFICIAL NEURAL NETWORKS

OPTYMALIZACJA PROCESOW OBROBKI METALI Z UZYCIEM

TECHNIKI HYBRYDOWE]J OPARTEJ O SZTUCZNE SIECI NEURONOWE

The optimization problems in the field of material processing are very complex. They
require a lot of computations, because most of processes are simulated on the base of
the Finite Element Method (FEM). In classical optimization approach, every iteration re-
quires time-consuming FEM calculation of the considered problem, which increases the
computation time of the optimization procedures. The efficient optimization algorithms of
such complex problems should minimize the computation time. The paper presents a new
hybrid optimization technique based on the Artificial Neural Network (ANN) modelling.
The search of the optimal value is performed not directly on the objective function, but on
values predicted by its ANN metamodel. Such approach does not require FEM recalcula-
tions of the whole analyzed problem for each optimization iteration. It allows decreasing the
computation time of the optimization procedure. The paper presents the description of the
proposed method, its algorithm and examples of application to test optimization problems
and the inverse analysis of materials properties.

W zagadnieniach dotyczacych proceséw obrébki materiatéw, problemy optymalizacji
sg bardzo skomplikowane. Wymagaja one bowiem wielu obliczert numerycznych, co wynika
z tego iz wigkszo$¢ proceséw modeluje si¢ za pomoca Metody Elementéw Skoriczonych
(MES). W klasycznym podejéciu, kazda iteracja metody optymalizacji wymaga czasochton-
nych symulacji MES rozwazanego problemu, co znaczaco zwigksza czas obliczef. Cecha
skutecznego algorytmu optymalizacji powinno byé zmniejszenie tego czasu. W artykule
przedstawiono nowa hybrydowa technike optymalizacji oparta o modelowanie z uzyciem
Sztucznych Sieci Neuronowych (SSN). Poszukiwanie wartoéci optymalnej nie jest przepro-
wadzone bezpoSrednio za pomocg zdefiniowanej funkcji celu, ale za pomocg jej wartosci
wskazanej przez metamodel SSN. Zaprezentowane podejécie nie wymaga ponownych obli-
czen calego analizowanego problemu za pomoca MES w kazdej iteracji algorytmu. Pozwala
to na zmniejszenie czasu obliczen procedury optymalizacji. W artykule zaprezentowano opis
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proponowanej metodyki, algorytm poszukiwania optimum, oraz przyklady zastosowania do
optymalizacji funkcji testowych i do wyznaczania parametréw modelu materiatowego w
analizie odwrotne;j.

1. Introduction

The common classical iterative optimization procedures (see Figure 1), which
are very efficient in case of mathematical problems, fail in case of the optimization of
materials processing. It is caused by the fact, that models of these processes are strongly
non-linear and associated with the Finite Element Method analysis. The FEM models
give good approximation of simulated processes, but usually are time consuming.
Therefore, optimization problems of these processes require long calculation time,
which often exceeds the acceptable limits and makes the whole optimization procedure
useless from the practical point of view.

Design
Variables
AN Optimigation
FEM I N— | Algorithm
Model |
Objective Constraints _

Fig. 1. Flow chart of the classical optimization procedure of real materials processing

Additional difficulties can be faced if the commercial codes (FORGE2/3, DE-
FORM, ANSYS, etc.) which are used for the simulation of these processes. In such a
case, it is difficult to use the efficient optimization gradient-based techniques, because
derivatives of the objective function have to be computed numerically. It addition-
ally increases the optimization computation time. Therefore, different efforts towards
the decrease of the computation time are being undertaken. The main goal of the
work is the presentation of the new hybrid method, which is the modification of the
described in [1, 2] approximation-based optimization technique. It combines the Arti-
ficial Neural Network approach, used as the metamodel of the considered process, and
the Monte Carlo optimization technique. Idea of metamodel application in ‘response
surface’ optimization problems of metal forming processes was widely described in
[3, 4].
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2. Description of the hybrid optimization method

2.1. General idea

The approximation-based optimization technique is a non-gradient method. The
minimum is not searched directly, using the commonly used techniques, but indirectly
through the examination of the values of considered objective function, not calculated,
but predicted by the ANN metamodel. The hybrid optimization technique consists of
the three main stages:

1.

Construction of the Artificial Neural Network model which predicts the
objective function values for any input data of design variables. Such neural
network is treated as the metamodel of the considered real process (see Fig. 2).
The output of the ANN metamodel is a new objective function, which has to
be minimized.

Choosing a training data set for the ANN metamodel. Selection of the initial
design variables vector is crucial. The objective function has to be evaluated
for each variable, which requires the time consuming FEM simulation of the
considered process. The accuracy of the predictions of the ANN metamodel
decreases if the number of training points is not sufficient enough and if they
are not properly located. Therefore, the number of points of the training data
set and the location of these points is essential for the results and efficiency of
the optimization procedure. The initial training data set can be chosen through
the Design of Experiment method (DoE), based on statistical principles, used to
gain both effectiveness and efficiency in data acquisition [S]. The DoE method
can give the minimal number of the initial experimental points and identify the
most important ones. Significant reduction in the size of the training set and
improvement of the accuracy of the predicted results was observed if the DoE
was used for choosing the training set [6].

Iterative search of the minimum of the values predicted by ANN meta-
model. The search for the optimal values of the metamodel can be performed
by one of the nonlinear optimization techniques. Monte Carlo method proved
to be very useful in cases of the complex form of the objective function. The
found minimum is being added to the training data set for the next iteration.
The modified design variables data set is used then for the rebuilding the ANN
metamodel and the whole procedure of the optimization repeats, until the stop
criterion is fulfilled. The most common stop criterion is simply the verification
of the difference between the previously found and the actual value of the
minimum.

Since the proposed optimization technique does not require as many FEM calcu-
lations of considered process, as classical optimization methods, it allows decreasing
of the computation time.
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Fig. 2. The basic idea of the hybrid optimization technique
2.2. Algorithm

The algorithm of the hybrid optimization method consists of the following steps:

Step 1.

i) Definition of the objective function F and initial optimization conditions: limits
of the search space, the stop criterion, constraints, iteration limits, etc.

ii) Selection of the initial design variable data set according to the Design of
Experiment (DoE) rule. The resulting design variable data set can be defined
as: A = (a;,a,...,a,} of n trial vectors a; = [a},a), ..., a};] of design variables,
where N is a number of optimization variables.

Step 2.

i) Computation of the objective function values {F (a;), F (a3), ..., F (a,)} corre-
sponding the design variable data set A by FEM simulations of the analyzed
process.

Step 3.

i) Construction of the ANN metamodel. Training of the ANN metamodel using the
data set consisting of the selected in step 2 objective function values. The output
of the metamodel becomes the new optimization objective function named F*.
In consequent iterations the training set is enlarged by the value of objective
function in the minimum found in the previous optimization iteration.
Step 4.

i) The search of the minimum a* of the objective function F* using chosen op-
timization technique. The search of the minimum is performed on the meta-
model and does not involve any additional FEM analysis of considered process.
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Optimization starting point is chosen randomly only at the first optimization
iteration, while in the successive iterations is linked to the previously found
optimal value Fy, ., (a%).

Step 5.

i) Calculation of the minimum value of the objective function F* (a*) (one, single
FEM simulation of considered process).
Step 6.

i) If |F*(a*) - F},,(a")
Fpre (a*) = F* (a*), and the program terminates. Otherwise:
() F},,, =F* and F},,,(a") = F*(a"); a" becomes an additional value of the

design variable and F* (a*) becomes an additional point for new training of
the ANN model.
(2) The computations return to the Step 3.
The flow chart of the algorithm of the described hybrid optimization technique is
presented in Fig. 3. It is seen that the FEM analysis of considered process and optimiza-
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Fig. 3. The flow chart of the algorithm of the hybrid optimization technique




614

tion procedure are separated. Therefore, no interaction between the FEM simulation
program and optimization procedure is needed. In consequence the computation time
is much lower than that of the classical optimization approach.

2.3. Examples of the optimization of simple test objective functions

Artificial Neural Networks are able to approximate complex multi-dimensional
functions [7]. Two analytical two-dimensional functions of the complex shape were
selected to validate approximation ability of the ANN:

Goldstein-Price’s function described by equation:

fey) =1+ +y+ 17 (19 - 14x + 3x% - 14y + 6xy + 3y%)] - [30 + (2x - 3y)?

(18 = 32x + 1242 +4sy-36xy+27y2)]. (1)
Michalewicz’s function:
2 2 2
fx,y) =- (sin () sin® (%) + sin (x) sin®® (x;)) @)

Analyzed functions are characterized by complex shapes with typical optimization
traps (e.g. local minima, long valleys, flat horizontal surfaces, etc.), which cause, the
classical optimization procedures fail. The number of the data of a training set for
the ANN metamodel should be as small as possible, because of high costs of the
objective function evaluations. The initial training data set had 1024 records and was
subsequently decreased to 32 records (1024 — 512 — 256 — 128 — 64 — 32). The input
data contained vectors of parameters values, which were generated randomly inside
limited search space. The values of the considered objective function were calculated
analytically. The MLP model of Qnet2000 ANN simulator was used. Different network
topologies were tested and the optimal one of the 2-5-1 structure was chosen. The
hidden and output neurons had sigmoidal transfer functions. Despite the influence on
quality of objective function approximation, decreasing number of training data records
did not influence significantly the ANN predicted positions of the global minima in
all considered cases (see Table 1). The results of the ANN approximation of analyzed
objective functions are presented in Figures 4 and S. It is seen that in the case of the
training based on the 32 records the ANN approximation lost some of the features of the
objective functions (e.g. local minima), but the global minimum and its neighbourhood
is represented with a sufficient accuracy.

It is seen in Figure 4, that accuracy of the ANN predictions of a global minimum is
low after the initial training. According to described optimization algorithm, the quality
of the objective function representation increased and a localization of predicted global
improved after six iterations.

In case of objective function (2), the initial training gave very good prediction of the
localization of the global minimum (see Figure 5). Although there are some discrepan-
cies between the predicted shape of the function, it does not influence the optimization
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TABLE 1
Results of the ANN approximation of the test functions
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Fig. 4. Surface plots of the objective function (1): original (a), ANN’s approximation after initial (b) and

procedure. The optimization algorithm converged after 2 retrainings of the ANN meta-

model.



Fig. 5. Surface plots of the objective function (2): original (a), ANN’s approximation after initial (b) and
final (c) training

3. Application of the hybrid optimization technique to the inverse analysis

3.1. Inverse method

The precise description of the boundary conditions and rheological properties
of material is the fundamental point of the simulation of the material processing.
Rheological behaviour of deformed materials is usually described by equations with
parameters evaluated experimentally in plastometric tests. Due to strong non-linearities
and inhomogeneities of the deformation process, the adequate evaluation of parameters
of equations describing material rheology and boundary conditions is very difficult.
As the result of improper estimation of these parameters, discrepancies between the
calculated and measured values of the process output data are observed. The inverse
technique [8-14] can improve the evaluation of these parameters. The main part of
the inverse method is an optimization technique in which the distance between the
measured and calculated values of analysed process features forms the optimization
objective function. Obtained optimal values can next be used in the simulation of the
forming processes. The algorithm of the inverse analysis is presented in Figure 6.
Generally, the inverse analysis requires long computation time and a selection of the
best optimization strategy is still a difficult problem. The presented hybrid optimization
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technique can be very useful in the inverse analysis and can decrease the computation
time.

df=F(x,p) j=1.k,i=1.n Experiment
—p Ji T\ ’ Process meas )
calculated using FE model i L ured gl
” d? j=1.ki=1.n
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Fig. 6. Algorithm of the inverse analysis [9]

3.2. Results of the optimization problem

Since common Inverse problems are complex (large number of design variables
describing materials rheology and boundary conditions, high sensitivity of measured
data to process conditions), there are no methods efficient enough for solving optimiza-
tion problems in reasonably short time and with satisfactory accuracy. Proposed hybrid
optimization technique, presented also in [15], was validated in the inverse analysis of
rheological parameters describing flow behaviour of microalloyed Nb steel during hot
compression test [16]. The chemical composition of analysed material was as follows:
0.17%C, 0.43%Mn, 0.35%Si, 0.03%Cr, 0.03%Nb. A number of compression tests of
cylindrical samples (¢10mmx12mm) was performed with three strain rates: 0.1, 1 and
10 s7! for the temperature range of 550-650°C (ferritic phase zone). Hot processing
of materials requires well parameterized equation for proper description of material
behaviour for wide range of temperatures, strains and strain rates. The stress strain
curve used in simulations was described by the following equation [7, 13]:

of = V3 {Koe” exp (—Rog) exp ('g—) + [1 — exp (—Ry&)] K exp (g—f—)} ( \/§s)m , 3
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where: oy — flow stress, MPa; & — strain; & — strain rate, 7l ; e temperature, K;
m, n, Ro, Ko, K;, B, Bs — coefficients.

The MLP model of Qnet2000 ANN simulator was used for design of the metamo-
del. Different network topologies were tested and the 7-5-3-1 structure was chosen.
The hidden neurons had hyperbolic tangent transfer functions and output neurons had
sigmoidal transfer functions. Described hybrid optimization algorithm, applied to the
inverse analysis, gave reasonably good results. The convergence was reached after 27
iterations. Taking into account that every evaluation of the real objective function
consists of 9 FEM simulations (3 strain rates and 3 temperatures), the FEM code was
called 531 times (including initial training data containing 32 vectors of parameters
and objective function values, according to previously performed theoretical analysis
of influence of data number on training quality). Figure 7 shows the response of Neural
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< 00185
0.018
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0.017
0.0165
0.016

8 ..8.59 95 10 105 11 115 12
K

Fig. 7. Surface plot of ANN’s response

Network for changes of parameters K and K (other parameters remain constant with
its optimal values calculated in the last iteration). The search for minimum was based
on Monte-Carlo method in which 1024 randomly generated points were distributed at
the neighbourhood of previously found minimum.

TABLE 2
Optimal values of the equation (4) parameters

parameter { Kp n B K; B m Ry
10.58 | 0.13 | 2789 | 0.019 | 5950 | 0.063 | 0.47

Optimal values of the parameters of equation (4) are gathered in Table 2. Com-
parison between loads, measured and calcuated with optimal values of flow stress
equation (4) parameters, are presented in Figure 8. Very good agreement was observed.
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However, small discrepancies are seen for the highest strain rate values. It can be a
result of a slight softening phenomenon appearance, caused by high strain rate induced
temperature growth.
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Fig. 8. Comparison of loads monitored during experiment (solid lines) and simulation (dashed lines) for
different strain rates and temperatures: 550°C (a), 600°C (b), 650°C (c), respectively

4. Summary

Commonly used classical optimization algorithms are not effective enough in the
case of complex inverse analysis, where it is necessary to deal with the objective
function of many design variables. They require many objective function evaluations
during the optimization procedure, and often do not give a good convergence.

The paper presents the hybrid optimization technique, which can be useful in ma-
terials processing applications. The examples of its applications to the inverse analysis
are presented. Proposed optimization method allows the significant decrease of the
computation time of the inverse analysis without losing the quality of obtained results.
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