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SPECIFICATION OF ENERGY-BASED CRITERION OF ELASTIC LIMIT
STATES FOR CELLULAR MATERIALS

SPECYFIKACJA ENERGETYCZNEGO KRYTERIUM SPREZYSTYCH
STANOW GRANICZNYCH DLA MATERIAELOW KOMORKOWYCH

The aim of the paper is to apply the energy-based criterion of limit states in anisotropic
elastic solids proposed by Rychlewski [5] for prediction of elastic limit states in cellular
materials. The analysis is based on elastic model of a skeleton and an idealized description
of topological arrangement of cell structure for cellular materials. The considered unit cells
have, respectively, the form of a cube, a cuboid, a simple prism with the base of equilateral
triangle, and a simple prism with the base in the form of regular hexagon. The morphology
of the skeleton in a particular unit cell modeled by means of the struts joined in a rigid node
determines the elastic stiffness and its symmetry: cubic symmetry, orthotropy and transversal
symmetry. An analytical formulation of force-displacement relations for the skeleton struts
is found by considering the affinity of node displacements in tensile, bending, and shear
deformation. The elements of the stiffness matrix for a single cell are expressed as functions
of the compliance coefficients for stretching and bending of struts. The analytical formulae
for the elastic Kelvin moduli and the critical energy densities as well as the graphical
presentation of the results were obtained with application of symbolic operations provided
by Mathcad program. The distributions of critical energy density of particular elastic eigen
states with respect to the change of the stiffness of the skeleton were studied.

Celem pracy jest zastosowanie energetycznego kryterium stan6éw granicznych w ani-
zotropowych ciatach sprezystych, ktére zostalo zaproponowane przez Rychlewskiego [5] do
okreslenia sprezystych stanéw granicznych w materiatach komérkowych. Podstawe analizy
stanowi model sprezystego zachowania si¢ materialéw komérkowych o elementarnej komér-
ce w ksztalcie szecianu, prostopadioscianu, pryzmy o podstawie tréjkata réwnobocznego
i szeSciokgta foremnego. Przyjeto struktury komérkowe o powtarzajacym sie regularnym
uktadzie pretéw potaczonych w sztywnym wezle, ktére mogg odksztatcaé si¢ sprezyscie
pod wplywem sit osiowych lub momentéw gnacych i sit poprzecznych. Taki uktad charakte-
ryzuje sig sztywnoscia, ktéra moze determinowa¢ sprezyste wlasnoci o symetrii kubicznej,
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ortotropowej lub transwersalnej. Zaproponowano analityczny sposéb wyznaczenia ggsto$ci
energii granicznych oraz przedstawiono geometryczng reprezentacje zgromadzonej energii w
poszczeg6lnych stanach wiasnych przy jednoosiowym rozcigganiu. Wykorzystano przy tym
program do obliczefi symbolicznych Mathcad. Przeprowadzono réwniez analiz¢ wptywu
sztywnosci struktury na rozktad gestoéci energii granicznych dla poszczeg6lnych stanéw
wiasnych.

1. Introduction

Usually empirical strength hypotheses are used in order to determine the yield or
fracture limit in complex states of stress for various advanced materials having e.g.
composite, or cellular structure and characterized in general by anisotropic properties.
It appears, however, that it is possible to formulate, at least as a starting point, the theory
of strength (material effort) of anisotropic materials if we confine to the analysis of
elastic limit states. In such a case the theory is based on the assumption that the elastic
energy density is a measure of material effort. It is worthwhile to note that early works
of M.T. Huber [1], W.T. Burzynski [2, 3] and more recently by J. Rychlewski [4-6],
as well as J. Ostrowska-Maciejewska and J. Rychlewski [7] provided the basis for
the formulation of energy-based criteria of elastic limit states. This subject was further
studied in [8] and [9]. Also P.S. Theocaris [10] and M.W. Biegler and M.M. Mehrabadi
[11] as well as Y.P. Arramon et al. [12] contributed independently to the anisotropic
energy-based strength criteria, which are considered separately for particular elastic
eigen states.

The aim of the paper is to apply the mentioned above theoretical results of [4-7] to
identify and specify the general form of energy-based Rychlewski criterion for different
kinds of cellular materials. Following the new idea presented in [13] and [14] about the
calculation of the energy limits of elasticity for the pertinent elastic eigen states from
first principles (ab initio calculations) we propose how to derive the analytical formulae
for the critical energy densities accounting for the elastic deformation and the yield
strength of the skeleton with its particular morphology and symmetry. Such analytical
formulae for the critical elastic energy densities based on elementary interactions in
a microstructure were derived for an open-cell foam in [15]. Modelling possibilities
of the influence of the strength of struts forming the cellular structure of diverse
symmetries on the distribution of energy limits is also studied. We assume that essential
macroscopic features of mechanical behaviour of cellular materials can be inferred
from the deformation response of a representative microstructural element following
the approach presented in the monograph by L.J. Gibson, M.F. Ashby [16] and in
{17]. Further references can be also found in [15]. The analysis is based on material
properties of a solid phase (skeleton) and topological arrangement of cell structure
for a wide range of cellular materials characterized by different types of symmetries,
morphologies and type of solid materials from which microstructure is built. The
considered unit cells have, respectively, the form of a cube — Fig. 1, a cuboid —
Fig. 2, a simple prism with the base of equilateral triangle — Fig. 3 and a simple
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prism with the base in the form of regular hexagon — Fig. 4. As it is shown in Figs.
1-4, the morphology of the skeleton in a particular unit cell modeled by means of the
struts joined in a rigid node determines the elastic stiffness and its symmetry: cubic
symmetry, orthotropy and transversal symmetry. In [15, 18, 19] constitutive description
of the linear elastic behaviour of honeycombs and open-cell foams is developed on the
basis of microstructural modelling of their skeleton. An analytical formulation of force-
displacement relations for the skeleton struts can be found by considering the affinity
of node displacements in tensile, bending, and shear deformation. The elements of
the stiffness matrix for a single cell are expressed as functions of the compliance
coefficients for stretching and bending of struts. The analytical formulae for the elastic
Kelvin moduli and the critical energy densities as well as the graphical presentation of
the results were obtained with application of symbolic operations provided by Mathcad
program [20]. The distributions of critical energy density of particular elastic eigen
states with respect to the change of the stiffness of the skeleton were also studied. The
presented analysis can be applied for ceramics, polymers as well as for honeycombs
and intermetalics having cellular structure on macroscopic level or in micro-scale.

2. Energy-based criterion for cellular materials

Different limit states of cellular materials can be considered, [16]. Each limit
state is related with a particular mechanism of failure of the skeleton elements. The
compression tests carried out on specimens made of cellular materials reveal the limit
states, which show that a linear elasticity range transforms into a range of non-linear
elastic behaviour followed usually by an extensive region of permanent strains, pro-
duced by buckling or crushing of the skeleton. This leads to localized forms of overall
deformation terminated by densification and final squashing of the specimen. An en-
ergy approach to the heterogeneous deformation modes in open-cell foams, which is
based on the condition of the lack of convexity of the governing energy functional was
presented in [21]. The subject of our interest is the state corresponding to the limit of
linear elasticity, which corresponds to the onset of yield in the skeleton struts according
to the Huber-Mises criterion for isotropic ductile material of the skeleton. If
the skeleton is made of a brittle material or a material with different values of strength
under tension and compression the other criterion should be applied to calculate the
elastic limit states of cellular materials, e.g. Burzyrski criterion [3, 4]. For such
a definition of the limit state we can formulate precisely a measure of material effort as
the density of elastic energy corresponding to a particular elastic eigen state, which can
be determined by the symmetry of the limit tensor H describing the range of elastic
behaviour according to the criterion for anisotropic solids of R. von Mises [22]

o -H-0=Hjojoy < 1. 1)

J. Rychlewski [5, 6] proved that “the Mises limit criterion bounds the weighted
sum of stored elastic energies corresponding to uniquely defined, energy orthogonal
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parts of stress”, [6], p. 169. This means that the Mises limit criterion has the energy
interpretation for any anisotropic material:

oy, 2()
A

20(0) =0 C-0; = Cum0y 0 i = 1,..., p,

o-H-o= <1, pgé6

2

where o = 01 + 0, +...+0, is the exactly one energy orthogonal decomposition of the
stress tensor determined by the symmetry of H, which in our case is assumed to be the

same as the symmetry of elastic compliance tensor C, ® (0;) = %:'- is the elastic energy
density stored in the pertinent eigen state i, 4; denotes the elastic Kelvin modulus in the
elastic eigen state i , and @f is the energy limit of elasticity in the elastic eigen state £,
which according to [9] is called the Rychlewski modulus. If the energy limit of
certain eigen state tends to infinity, we say that this state is safe for any state of stress.
For example, in the theory of plasticity of isotropic metallic solids it is often assumed
that the spherical parts of stress tensor are safe. In the case of cellular materials such
an assumption does not hold. Then all limits of elasticity should have finite positive
values. The values of energy limits of elasticity (Rychlew ski moduli) should be
determined experimentally, what in particular for the case of cellular solids revealing
elastic anisotropy is not an easy task. Therefore, following the idea presented in [13,
14], we propose to derive the analytical formulae for the Rychlewski moduli
accounting for the elastic deformation and the yield strength of the skeleton with its
particular morphology and symmetry.

In the case of considered in [18] and [19] cellular structure of a cubic unit cell,
Fig. 1, the energy-based criterion of elastic limit states (2) holds for p = 3 and the
Rychlewski moduli, ®f,®f, and @, denote respectively the energy limits of

zd

Fig. 1. Cubic cell, L — strut length, s, — axial elastic stiffness, s, — bending elastic stiffness
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elasticity for the eigen state I — hydrostatic one, the eigen state II — deviatoric one
related with an extension along one of the edges of a cubic cell with simultaneous
shortening of the two remaining ones, and the eigen state III — deviatoric one related
with the change of the angles between the edges belonging to the same face of a cubic
cell.

For cellular structure of a cuboid unit cell, Fig. 2, the energy-based criterion of
elastic limit states (2) holds for p = 6 and the Rychlewski moduli @7, @7, and
®f,, denote respectively the energy limits of elasticity for the eigen states: 1, II, and III,
which are related with the pertinent stretching along the edges of the unit cell, while
@7, @, and @7, are the energy limits for the eigen states: IV, V, and VI, respectively,
related with the change of the angles between the edges belonging to the same face of
a cuboid cell.

>

\

<
A

-~
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Fig. 2. Cuboid unit cell, Li-2 - 1-2 strut length, L;_4 - 3-4 strut length, H — 5-6 strut length, sy; —
axial elastic stiffness of strut i-j, s,i_; — bending elastic stiffness of strut i-j

For cellular structure of a simple prism with the base of equilateral triangle, Fig.
3, as well as, a simple prism with the base in the form of regular hexagon, Fig. 4, the
energy-based criterion of elastic limit states (2) holds for p =4 and the Rychlews-
ki moduli ®f and ®7,, denote respectively the energy limits of elasticity for the eigen
state ] — related with stretching in the base plane along the edges of a unit cell, for
the eigen state II — related with stretching along the edges of the unit cell, which are
perpendicular to the base, while @f,;, corresponds to the eigen state III, which can be
realized with stretching along one of the edges of the base and simultaneous shearing,
and®j,, corresponds to the eigen state IV, which can be realized with the stretching
along one of the edges perpendicular to the base and simultaneous shearing.
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Fig. 3. Simple prism with the base of equilateral triangle, L — lenght of struts in XY plane,
H — lenght of struts parallel Z axis, Sy, Sy — axial elastic stiffnesses, s, s;z — bending

elastic stiffnesses

= §

Fig. 4. Simple prism with the base in the form of regular hexagon, L — lenght of struts in XY plane,
H — lenght of struts parallel Z axis, su., Ss — axial elastic stiffnesses, s, s,y — bending

elastic stiffnesses

3. Calculation of the energy limits of elasticity for particular elastic eigen states

The energy limit of elasticity results from analysis of pertinent elastic eigen state
for a given unit cell. First the analytical derivation is presented for a cubic unit cell.
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Knowing the stiffness matrix for a cubic cellular structure [18, 19], three elastic eigen
values can be determined, which are known in the literature as Kelvin moduli [6]. For
the assumed skeleton geometry and morphology of the cellular structure the Kelvin
modulus of the I eigen state — hydrostatic one, belonging to the one-dimensional
subspace of six-dimensional stress space, is equal to the elastic modulus of the II
eigen state — deviatoric one related with an extension along one of the edges of a
cubic cell with simultaneous shortening of the two remaining ones, belonging to the
two-dimensional subspace of stress space. The Kelvin modulus of the III eigen state
— deviatoric one is related with the change of the angles between the edges of the
same face of a cubic cell, belonging to the three-dimensional subspace of stress space.
Then the corresponding formulae read as follows

Sn
A=A =—
1=4 =57
Sn
Air=Ar = Ar = —
=A== 3
2s.
/1111=/14=/15=/16=ZI'?-

The symbol s,denotes axial elastic stiffness of the skeleton strut and s; is bending stiff-
ness of the skeleton strut regarded as a Timoshe nko beam. They are determined
by geometrical parameters of the strut: a length L, a cross-section A, and a moment of
inertia J of the cross-section, and the elastic constants of the skeleton material: E; —
Young modulus, and G; — shear modulus. For a prismatic strut the elastic compliance
Cn =S5, land ¢, = 57 1 is defined respectively as

L L’ L

= = + .
2EA T T 2aE57 T 2GsA,

From the known kinematics of the unit cell we can relate the following components
of elastic limit forces in the skeleton struts with the elastic limit state corresponding
to a particular elastic eigen state of the cellular material

Cn

C))

F; = AR, &)

for tension and compression of a skeleton strut, where R, is the elasticity limit in
tension or compression and

.
T Lk
for bending of Timoshenko beam.
Calculation of volume averages of the stress tensor in the skeleton strut o5, components

of which taken in the coordinate system of the unit cell are determined by limit forces
(5) and (6)

©)

o=— | oSav, Q)
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where V denotes the unit cell volume, V° is volume of the skeleton strut, gives the
macroscopic stress tensor acting on the faces of unit cell. Projection of the resulting
macroscopic stress tensor (7) on the particular elastic eigen states [6] leads to the
following formulae for elastic eigen stress in the limit state:

=k 0 0
or=0] = 0 ——el 0

On=02,3 =

@®

O =04,5,6 =

In the eigen states II and III the components of stress in elastic limit state were
calculated for the simultaneous realization of strain states belonging to their particular

subspaces, e.g. trigonal strain for the eigen state III. The corresponding energy limits
of elasticity take the form:

1 1L 6fA RN

2@;:/{—1(0'1 0'1 73( 2)
AR, )2 &)

An Tf‘

2
20 =L (onu-on)= 3
L

2 R?
(4
205, = ,1", (onr-oun = 1 6 7%

where k is the maximum distance between the upper and lower fibers of the beam
cross- section, A denotes the cross-section area and 7 is the moment of inertia of the
beam cross-section. Performing similar analysis for particular representative cells the
analytic relations for Kelvin moduli and elastic energy limits for pertinent eigen states
can be obtained.

2. A cuboid unit cell. The eigen values of the stiffness matrix read as follows:

Ly asp1-2 L3 45534 Hsps-6
A== ————, Adp=h=—r—' An=A3=or——
2L3_4H ’ 2L -,H ’ 2L1_2L3_4,
%—%‘fﬁ—;%"%s-4
il -4 73— St
/IIV e /14 Li_2H ’
_2%5;3__51:15 10)
12 “Sr1-2+H 556 Thizis2
/IV b /15 TseH )

uZ_ Sr3-4 L1

S,
— - L3-42-‘r3—4"’-1-2’r1—2 2 i
/IVI = ’16 b L3-eH
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The corresponding energy limits of elasticity in particular eigen states take the form:

P AR, =\ i f<4A Rt \2 1 AR, |
2 Q¢ = <], 20% =— ‘),2<1>8= ( ) )
1= 2, (L3-4 H) vy (LI—ZH = A \Li—2 L34

] I’ R? 1 I’R?
205, = —38 £ , 2@ = —38 : 11
TSN £, 2y 2R Ty R IR H? (b
205, = A1 I’R?

Ayi K L21_2 L%_4 H?

3. A simple prism with the base of equilateral triangle. The eigen values of the stiffness
matrix read as follows:

\/§s 2 \/§H s
/{] = /{1 = 6 "L’ /111 = /13 . _QTE’ (12)
iy =a= 116 ‘ ygsanrL /1 =) = 4v§HsTHsTL
Ty T 3H(sp + 5r1) 45 T 3312, + 4H2s,y)

The corresponding energy limits of elasticity in particular eigen states take the form:

1 2 A2R? 1 16 A2R?
29 = — 2 e e _ e
'™ 2,3 L2H? 2% A 27 LA
(13)
Ap il 2 I> A2R2 (61 -8 V3) ., _ 1 6 IR
m = 2 9 HX L2 (4I+LhAY®’ V" A 27 H2 LA B

4. A simple prism with the base in the form of regular hexagon. The eigen values of
the stiffness matrix read as follows:

‘/:;SnL ‘/§HS,,H
=4 = y An=A = ——,
& . (14)
e e g VB2 o 2V3Hswsu
=A== ST Ay = A=A = s S

The corresponding energy limits of elasticity in particular eigen states take the form:

1 ARZ, 1 4 AR
20f = —6 -5, 2QIf=— 2 —=¢,
A LPH? A 3 H2I? as)
208, = 30 G +2s 1)’ REA? I 1 16 I*R

20, =

Am " H2L2(dsyI+Lsy hA)R Aw 3 H2LA R
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4. Elastic energy density distribution to individual eigen states — graphical
representation

In [4] the elastic energy density function ® was depicted geometrically by means
of the surface of constant energy 2® () = 1, which takes form of the six dimensional
ellipsoid in the space of symmetric tensors of the second order. The axes of the
ellipsoid are directed along the axes of the elastic eigen states. The similar geometrical
interpretation has the energy-based criterion (2). In the case of cubic symmetry — a unit
cell in the form a cube Fig. 1, there is possible to represent graphically the energy based
criterion (2) as the three dimensional ellipsoid having the axes directed along the three
elastic eigen states [13]. In order to illustrate graphically the energy-based criterion of
elastic limit states, specified for different kinds of cellular structure possessing the lower
symmetry, we confine our discussion to the eigen states, which are typical for plane
state of stress. The elastic energy density distributions to individual elastic eigen states
for uniaxial loadings along a family of directions n are considered. The plane state of
stress produced by the loading along the axis n = cosae; + sinae,, in tension (o, > 0)
or compression (o, < 0), is given by the following representation in the orthonormal
basis (ey, e;) orientated along the chosen axes of the considered unit cells:

cos’a  cosasina

om) e o, . .5 . (16)

cosasina  sin‘a
The stress tensor of the plane state of stress o-(m) can be decomposed into three
elastic eigen states for given symmetry of elastic stiffness tensor and represented in
the orthogonal coordinates connected with the normalized eigen state vectors. For the
material with a cuboid elementary cell corresponding to orthotropic symmetry the

9,1MPa)

033 0.43
7, [MPa)

-~
El = ap|MPa}

Fig. 5. Visualisation of the stored elastic energy for the eigen states: oy — I eigen state, o;; — II eigen
state, oy; — VI eigen state
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energy-based criterion can be depicted in the coordinates of three elastic eigen states
as an ellipsoid. The details of the calculations of the elastic eigen states and the limit
states surfaces with assumption of hypothetical elastic properties of the skeleton with
use of Mathcad program are presented in [23]. The values of the assumed mechanical
properties of the skeleton were based on the studies on cancellous bone presented in
[24] and applied in [18]. The results of these calculations for a cuboid unit cell are
shown in Fig. 5. In the case of transversal isotropy corresponding to a simple prism
with the base of equilateral triangle — Fig. 3 and a simple prism with the base in the
form of regular hexagon — Fig 4, the elastic energy corresponding to a plane state of
stress cumulates in two elastic eigen states. This is depicted in Fig. 6 in the form of
ellipse, which corresponds to the transversal isotropic symmetry of hexagonal prism.
The similar graphical representation can be obtained for the prism with the base of
equilateral triangle. The straight lines reaching the limit energy surfaces in Figures 5
and 6 correspond to possible experiments of axial load determining the elastic limit.

Oy [MPa)

- 6926 o, [MPa] .26

Fig. 6. Visualisation of the stored elastic energy for the eigen states: o; — I eigen state, oy — I
eigen state

For the same hypothetical skeleton material the influence of the variation of stiff-
ness of the skeleton struts on the elastic energy density distribution to individual eigen
states was studied. The length to diameter ratio of the considered struts was assumed
lower than the critical buckling length of the strut under compression. The stiffness of
the skeleton was controlled by the change of the struts diameter d. The detail analysis
with the derivation of analytical formulae and the results of calculations with use of
Mathcad program [20] are presented in [25]. Fig. 7 shows an example of the non
dimensional elastic energy density distribution to individual eigen states for cellular
materials characterising with three typical unit cells: a cubic cell, a cuboid one and a
prism with the base of regular hexagon. A simple example of the analytical formulae
describing the contributions of the limit energy density for a particular eigen state in
the case of the skeleton in the form of a cubic unit cell is given:
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where d is the diameter of the strut cross-section and v denotes the Poisson’s ratio of
the skeleton material. The more complicated formulae for other unit cells are derived
in [25].

¥ b) L]

Y
'

O 1COOMTATE i) CADRIATE
s SUGBMTATE i W EOMITATE

Fig. 7. Distribution of limit energy densites to individual eigen states as a function of the stiffness of the
skeleton struts (a) — cubic cell, (b) — cuboid unit cell, (c) — simple prism with the hexagonal base,
A" — non dimesional circular cross — sectional area of the skeleton strut

®; — non dimensional limit energy density of the eigen state i

5. Conclusions

The paper shows that it is possible for many kinds of cellular materials to obtain
analytical formulae describing the elastic limit energy densities in the function of the
structural parameters of the skeleton. This opens the possibility, at least in the limits of
possible range of structural changes, to tailor the materials according to the assumed
functional requirements. The presented analysis can be applied for ceramics, polymers
as well as for honeycombs and intermetalics having cellular structure on macroscopic
level or in micro-scale.
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