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ALGORITHMS OF FURNACE CHARGE BURDEN OPTIMISATION IN FOUNDRIES

ALGORYTMY OPTYMALIZACJI NAMIAROWANIA W SYSTEMACH ZAŁADUNKU PIECÓW ODLEWNICZYCH

This article describes the methods helpful in choosing an optimum charge burden for foundry furnaces with classification
of those techniques which can be useful in respective calculations. A basic part of all methods are mathematical models
describing various situations which can happen in the technological process when charge burden is calculated. The primary
parameter in all models is the chemical composition of charge constituents, which can be defined in either deterministic or
fuzzy form. The secondary parameter adopted in calculations are the currently used unit prices of charge materials. The analysis
and synthesis of the methods of charge calculation is completed with an example where the optimisation task of charge burden
calculation has been solved using as a tool the author’s own computer program.
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W artykule przedstawiono metodykę doboru optymalnego namiaru wsadu dla pieców odlewniczych wraz z klasyfikacją
metod mogących mieć zastosowanie w obliczeniach. Integralną częścią metod są modele matematyczne ujmujące możliwe
sytuacje w procesie technologicznym namiarowania wsadu. Parametrem podstawowym w poszczególnych modelach jest skład
chemiczny składników, który może być zdefiniowany w postaci deterministycznej lub rozmytej. Parametrami drugorzędnymi,
jakie przyjęto do obliczeń, są ceny jednostkowe zakupu materiałów wsadowych. Dopełnieniem analizy i syntezy metodyki
wyznaczania namiaru jest przykład obliczeniowy, w którym zadanie optymalizacji rozwiązano, stosując autorski program
komputerowy.

1. Introduction

In an attempt of optimising the casting production
process it is necessary to use the most modern meth-
ods of planning and control at nearly all stages of the
technological process. One of the stages being most im-
portant in the manufacture of castings is fabrication of
liquid metal characterised by strictly determined param-
eters. Most frequently these parameters are dictated by
the type of the applied technology of manufacture, in-
cluding the quantity (weight) of charge, chemical com-
position as well as, and tapping and pouring temperature.
A very important factor in optimisation of the econom-
ic production of castings is also the cost of fabrication
of a mass volume of molten metal which, under given
conditions, should be as low as possible. To satisfy the
above requirements, various attempts have been made to
determine optimum charge burden, adjusted to the type
of foundry furnace currently used and to the adopted

policy of management of the charge materials stored in
foundry.

The article describes the classification of the meth-
ods of charge burden calculation, with selected math-
ematical models of tasks for optimum charge burden
computation. The principles of modelling the uncertain
(fuzzy) values, which are used in the description of in-
accurate chemical composition and/or unit price of indi-
vidual charge materials have been described.

2. Classification of methods used to calculate the
charge burden

It follows from various sources of information
known to the author that the reference literature (Polish
and international) lacks a study which would discuss in
a comprehensive way the theory of charge burden calcu-
lation. Some fundamentals are only available, and they
can serve as a background against which a theory like
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the one described in this article can be constructed. The
main element in this theory will be the method of charge
burden calculation. The author proposes a classification
of the methods used so far for charge burden calculation
according to the following criteria:

I. Melting process
1. Calculation of charge burden to fabricate mol-

ten metal:
a) Calculation of charge burden for an empty

furnace
b) Calculation of charge burden for a furnace

partially filled with:
– solid charge
– melted charge.

2. Calculation of charge burden to correct the
chemical composition of molten metal in fur-
nace (or in foundry ladle):
– simplified methods,
– optimising methods.

II. Type of method used in charge burden calcu-
lation
1. Diagrammatic methods:

– graphical methods,
– geometric methods.

2. Analytical methods
3. Numerical methods (computer-aided meth-

ods):
– linear algebry,
– optimisation
• methods of linear programming
• methods of square programming

III. Type of charge and values of cast alloy pa-
rameters (chemical composition, unit price):
1. Deterministic description
2. Fuzzy description:

– two-level,
– multi-level with finite number of levels,
– continuous.

IV. Type of optimisation:
1. Monocriterial tasks of charge burden calcula-

tion
2. Multicriterial tasks of charge burden calcula-

tion
The presented classification allows for the conven-

tional methods of charge burden calculation, taking also
into consideration the most modern techniques of fuzzy
optimisation developed by the author [1-4].

3. Stages of charge burden calculation

Calculation of charge burden to each type of the
foundry furnace consists of the three basic stages:

Stage I – Determining, from technological guidelines
or by calculations, the weight of the charge
unit. In most cases, the weight of the charge
depends on foundry’s production demand
and is restricted by the rated capacity of
melting installations. Only in the case of
cupolas, the empirical formulae are used,
and they enable the weight of a single
charge burden to be effectively determined
[1, 2].

Stage II – Determining, by assumption or calculation,
the chemical composition of charge which,
for a given proces of melting, will ensure
the correct chemical composition of molten
metal.

Stage III – Determining, by the selected method, the
charge burden. This operation includes cal-
culation of percent or mass fraction of
charge components included in the total
calculated charge.

The decisions of technological nature taken at Stage
II have an important effect on final output of the melting
process. This mainly refers to the chemical composition
of molten metal which may also depend on factors oth-
er than the sole chemical composition. The factors that
are responsible for the chemical composition of molten
metal include the type of charge melting process and
the type of charge melting installation. It is generally
assumed that in electric furnaces (induction, arc and
resistance), because of melting losses, the content of
chemical elements in molten metal is lower than it is
in the charge. In cupolas this situation is much more
complicated, mainly because the content of carbon and
sulphur tends to increase, since the metallic charge is
melted in the presence of a solid fuel (coke), containing
these both elements.

The choice of a method to carry out Stage III de-
pends on how complex the task of charge burden calcu-
lation is, i.e. on the number of chemical elements and
charge components included in calculations. The sim-
plest tasks including one, two or three chemical ele-
ments can be solved by means of a selected diagrammat-
ic method (graphical or geometric) or, if possible, can
be reduced to a system of linear equations and solved by
one of the analytical or numerical methods of the linear
algebra (for example, Gauss or Gauss-Jordan elimination
method).

Further part of this publication describes in a more
comprehensive way the mathematical models used in de-
termination of optimum charge burden.
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4. A generalised deterministic model of charge
burden calculation

One of the first mathematical models of the task
of charge burden calculation was described in [1]. The
study describes the task of minimising, where the objec-
tive function is assuming the following form:

f (x) =
N
∑

j=1

c jx j (1)

where:
x – vector of the searched decision variables; in this

case it is the content of each charge component in % (if
mw = 100%) or in kg (if mw is expressed in kg),

N – number of charge materials considered in cal-
culations,

c j – unit price of j-th charge material in price unit
per mass unit.

The objective function (1) searches for the charge
burden of the lowest total cost. The technological guide-
lines for this model were defined as a system of con-
straints:







































































N
∑

j=1

ai jx j = bi · mw

N
∑

j=1

x j = mw

0 6 x j 6 x̄ j

i = 1, 2, ...,M; j = 1, 2, ...,N

(2)

where:
ai j – content of i-th chemical element in j-th charge

component, %,
bi – content of i-th chemical element in charge, %,
M – number of chemical elements considered in

calculations,
mw – charge weight in kg or equal to 100%,
x̄ j – upper limit of the content of j-th component in

charge in kg, or in %.
In the quoted reference literature [1], five basic

chemical elements were taken into consideration, i.e.
carbon, silicon, manganese, phosphorus and sulphur (C,
Si, Mn, P and S). Additionally, the effect of constraints
on the content of individual materials in the calculated
charge has been assumed. The task of optimisation of
the objective function (1) with contraints (2) is the task
of linear optimisation, since both function (1) as well
as the system of constraints (2) have the form of linear
functions. In solving thus formulated task one can use,
e.g., the method of simplexes [8, 9].

The optimisation task (1÷2) may create some prob-
lems of strictly numerical nature. The system of con-

straints (2) does not allow for the lower limits in content
of each of the considered charge materials, so willingly
used by process engineers preparing the metal melting
process. If strictly determined chemical composition of
charge represented by a value bi is used, it may cause
errors when the values calculated with very high ac-
curacy by computer are rounded, making determination
of the value of vector x impossible, which the program
recognises as a lack of solution for the optimisation task
under consideration. To eliminate the above mentioned
inconveniences, it would be much better and easier to
adopt a system of constraints in the form [6]:
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0 6 x
j
6 x j 6 x̄ j 6 mw, j = 1, 2, ...,N

N
∑

j=1

x j = mw

(3)

where:
b
¯

i, b̄i – the lower and upper limit, respectively, in
the content of i-th chemical element in charge, %,

x
¯

j, x̄ j – the lower and upper limit, respectively, in
the content of j-th charge material, expressed in the same
units as x j.

Then, the task of computation of the charge burden
consists in searching for a set of values of vector x such
that will enable minimising the value of function (1) un-
der constraints (3). Yet, this task continues being the task
of linear optimisation, which means that it is possible to
use one of the methods of linear programming.

5. A generalised fuzzy model of charge burden
calculation

Applying the deterministic (strictly determined) val-
ues of parameters, such as the chemical composition or
unit price of charge materials is usually due to:
– averaging the values of the considered parameters,

due to fuzzy laboratory measurements of the chem-
ical composition done on a large volume of charge
materials and simplified data comprised in quality
certificates,

– disregarding some features (chemical composition,
unit price) common to different batches of the same
component, collected in the same bin,

– constraints imposed by mathematical models used so
far to describe the optimisation tasks, and difficult to
access computer programs used for solving of these
tasks.
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TABLE 1
Compilation of basic polygonal membership functions composed of rectilinear segments

Name of polygonal

membership function
Plotted graph Definition of membership function
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5.1. Mathematical description of uncertain (fuzzy)
values

In situation when the precisely determined values
of parameters cause oversimplifications considerably re-
stricting their practical use, one can recur to a description
of the investigated domain of reality using the theory of

fuzziness. The uncertainty of the values of the numerical
variables can be described by means of fuzzy sets [10].
According to [10], by the name of fuzzy set A, in a
numerical space of considerations X , we denote a set of
pairs:

A =
{(

µ
∗

A(x), x
)}

,∀x ∈ X (4)
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where:
µA – membership function of fuzzy set A, which to

every element x ∈ X ascribes the degree of its member-
ship µ∗

A
in fuzzy set A, where µA(x) ∈ [0; 1].

The membership function ascribes to each element
x of a given variable a value from the domain [0;1]:

µA(x) : X → [0; 1] ,∀x ∈ X (5)

The value, called the degree of membership, informs
us to what degree element x belongs to a fuzzy set A.
In [10] a comprehensive review of fuzzy sets and the
related knowledge have been presented.

For the description of uncertain (inaccurate), i.e.
fuzzy, values of parameters characteristic of the chemical
composition and possibly also of the unit price of charge
materials, one can use the membership functions of dif-
ferent classes. Table 1 below gives compilation of the
polygonal membership functions built from rectilinear
segments.

It has been decided to describe the fuzziness of the
chemical composition of charge materials by a polygonal
function in the form of uneven-armed trapezoid (Fig. 1).
The choice has been justified in the following way:
a) the membership function in the form of asymmetric

trapezoid operates at a level “0”, while the remaining
two functions operate at a level “1”. In foundry prac-
tice, describing the fuzziness of chemical composi-
tion at more than two levels of a membership func-
tion significantly increases the dimension of the op-
timisation task, which finds no justification in prac-
tical application. It can be assumed that level “0” is
a “pessimistic” level, i.e. such for which the range
of the content of chemical elements will be the least
favourable. On the other hand, level “1” can be called
“optimistic”, i.e. the one for which the range of the
content of chemical elements will be the narrowest.

a b c d x
0

1

(x)
Optimistic

level

Pessimistic
level

Fig. 1. Graphic interpretation of the content ranges of chemical
elements at the levels: µ(x)= 0 (“pessimistic”) and µ(x)= 1 (“op-
timistic”) for a membership function in the form of asymmetric
trapezoid

b) in terms of a fuzzy description of the chemical
composition of charge components, the function of
uneven-armed trapezoid replaces all other polygonal
functions of membership,

c) the function is characterised by four numbers, which
make the technological identification very easy, and

is very handy in collecting and processing of infor-
mation in the database of charge materials. The first
number denotes the lower content of chemical ele-
ment at a “pessimistic” level. The second number
and the third number denote, respectively, the lower
and upper contents of this element at an “optimistic”
level, while the last, fourth number denotes the upper
content of chemical element at a “pessimistic” level.
The proposed model of description of the fuzziness

is also applicable when describing the uncertain unit
prices of charge materials allowed for the calculations.

5.2. Model of charge burden calculation for fuzzy
chemical composition of charge materials and

determined unit prices

The task of foundry furnace charge burden calcula-
tion allowing for a fuzzy chemical composition of charge
materials will consist in determination of such fractions
of x j, for which the value of the objective function will
be minimised to the form:

min
x

N
∑

j=1

c jx j (6)

under the following constraints:
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0 6 x
j
6 x j 6 x̄ j 6 mw

N
∑

j=1

x j = mw

i = 1, 2, ...,M; j = 1, 2, ...,N

k = 1, 2, ..., q

(7)

where:
q – number of the membership function levels taken

into consideration.
For a rectangular model of the description of fuzzi-

ness (q = 2), the system of constraints will assume the
form of:
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(8)

while for a trapezoidal model, the constraints in optimi-
sation task can be defined in the following way:
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x j = mw

(9)

5.3. Model of charge burden calculation for fuzzy
chemical composition of charge materials and fuzzy

unit prices

The charge burden with strictly determined unit
price of charge materials can be calculated when these
materials have already been purchased by the foundry, or
when their purchase is planned and it is known for sure
that both the terms of purchase as well as the parame-
ters shall not change [5]. In the situation of long-term
planning of charge materials purchase, or when sudden
changes of prices over short periods of time threaten,
a very convenient option may be the possibility of de-
termining a charge burden for uncertain prices of the
charge components.

The fuzziness of the price of charge materials can
be simulated with the help of selected membership func-
tions in a way similar as it happens in the case of fuzzy
chemical composition.

If the price of a charge component is explicitly deter-
mined, then the objective function in optimisation task
cannot be defined in accordance with relationship (1).
In this case, for each level of the membership function

describing the price fuzziness, a separate objective func-
tion should be applied. If so, then there are many ob-
jective functions which reduce the optimisation task to a
multi-criterial linear programming under the assumption
that the system of constraints is in form (2) or in one of
its variants, e.g. (3) or (5).

One of the possibilities to determine the value of
vector x, for which all the linear objective functions are
to be minimised, is by defining the, so called, compro-
mise objective function. In its general form, this objec-
tive function can be described as:

min
x
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, (10)

where:
q – maximum quantity of membership function de-

grees for each of the fuzzy numbers allowed for in the
models of fuzziness,

f
k

– the value of objective function in an optimisa-
tion task in which the objective function at k-th level has

the form of min
x

[

f
k
=

N
∑

j=1
c

jk
x j

]

under constraints (2)

f k – the value of objective function in an optimi-
sation task in which the objective function at k-th level

has the form of min
x

[

f̄k =
N
∑

j=1
c̄ jkx j

]

under constraints (2)

Thus formulated objective function should be re-
garded as an effort to determine the value of vector x,
i.e. a charge burden the total cost of which will approach
both minimum and maximum values of unit prices of the
individual charge materials.

To define the objective function (10), it is necessary
to minimise, at each k-th level, the total cost of charge,
assuming the minimum, first, and maximum, next, val-
ues of the cost of each charge component. This enables
determination of the value of coefficients f

k
and f k and

substituting them in relationship (10).
For a rectangular model of fuzziness, the compro-

mise objective function shall assume the form of:

min
x
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where

f0 = min
x
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while for the trapezoidal model of fuzziness it shall as-
sume the form of:

min
x



































































f
0
−

N
∑

j=1

c
j0x j

















2

+

















f̄0 −

N
∑

j=1

c̄ j0x j

















2

+

+

















f
1
−

N
∑

j=1

c
j1x j

















2

+

















f̄1 −

N
∑

j=1

c̄ j1x j

















2



















































, (13)

where:
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The compromise objective functions (10), (11) and
(13) are square functions, and therefore, for these func-
tions, solving an optimisation task of charge burden cal-
culation requires allowing for a system of constraints (2),
(3) or (5), respectively, and using a method of square
programming.

Practical application of the task of charge burden
calculation for charge materials characterised by fuzzy
chemical composition and uncertain unit prices should
be (in the author’s opinion) limited to the case in which
the fuzzy price is simulated by a rectangular membership
function. Assuming one interval of changes in the unit
price of each charge material seems to be sufficient in

management of the chain of foundry supplies. The use
of more complex functions to describe unit prices con-
siderably expands the compromise functions and makes
programming of procedures creating these functions au-
tomatically difficult (though not impossible). An exam-
ple of calculations given below shows the possibility of
using in optimisation task a rectangular model of fuzzi-
ness of the unit prices.

5.4. Example of charge burden calculation for a
fuzzy chemical composition (trapezoidal model) and

fuzzy price (rectangular model)

Table 2 gives fuzzy parameters (chemical compo-
sition, unit price) of charge materials taken into con-
sideration in this optimisation task. In the example of
calculation no additional constraints have been assumed
as regards the content of each charge component.

Because of fuzzy unit prices quoted in this example
in the form of an interval of their changes (in a rectangu-
lar version of the membership function), it is necessary
to solve, first, the task of minimising the objective func-
tion to a form:

f0 = 2.60x1 + 2.40x2 + 2.20x3 + 5.00x4 + 4.20x5 + 4.70x6

(16)
and next the task of minimising the objective function
to a form:

f1 = 2.70x1 + 3.40x2 + 2.90x3 + 5.60x4 + 4.60x5 + 5.10x6

(17)
under the following constraints:

TABLE 2

Chemical composition and unit price of charge materials and assumed chemical composition of charge for calculation of example

Charge

component
Chemical composition, % Price

C Si Mn PLN/kg

x1 (0.22;0.24;0.26;0.29) (0.26;0.29;0.34;0.40) (0.15;0.17;0.21;0.25) 2.60÷2.70

x2 (3.4;3.5;3.6;3.75) (1.6;1.8;1.9;2.1) (0.64;0.75;0.86;0.98) 2.40÷3.40

x3 (3.2;3.25;3.32;3.38) (1.73;1.84;1.97;2.05) (0.35;0.38;0.39;0.45) 2.20÷2.90

x4 (0.05;0.1;0.12;0.15) (64.0;64.3;64.7;65.0) (0.25;0.32;0.34;0.35) 5.00÷5.60

x5 (89.0;90.0;91.0;91.5) (0.0;0.0;0.0;0.0) (0.0;0.0;0.0;0.0) 4.20÷4.60

x6 (0.4;0.44;0.52;0.57) (0.3;0.4;0.5;0.6) (81.0;81.6;82.0;82.5) 4.70÷5.10

CHARGE 3.0÷3.2 1.4÷1.6 0.6÷0.8
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0.22x1 + 3.4x2 + 3.2x3 + 0.05x4 + 89.0x5 + 0.4x6 > 3.0 · 100

0.24x1 + 3.5x2 + 3.25x3 + 0.1x4 + 90.0x5 + 0.44x6 > 3.0 · 100

0.26x1 + 3.6x2 + 3.32x3 + 0.12x4 + 91.0x5 + 0.52x6 6 3.2 · 100

0.29x1 + 3.75x2 + 3.38x3 + 0.15x4 + 91.5x5 + 0.57x6 6 3.2 · 100

0.26x1 + 1.6x2 + 1.73x3 + 64.0x4 + 0x5 + 0.3x6 > 1.4 · 100

0.29x1 + 1.8x2 + 1.84x3 + 64.3x4 + 0x5 + 0.4x6 > 1.4 · 100

0.34x1 + 1.9x2 + 1.97x3 + 64.7x4 + 0x5 + 0.5x6 6 1.6 · 100

0.4x1 + 2.1x2 + 2.05x3 + 65.0x4 + 0x5 + 0.6x6 6 1.6 · 100

0.15x1 + 0.64x2 + 0.35x3 + 0.25x4 + 0x5 + 81.0x6 > 0.6 · 100

0.17x1 + 0.75x2 + 0.38x3 + 0.32x4 + 0x5 + 81.6x6 > 0.6 · 100

0.21x1 + 0.86x2 + 0.39x3 + 0.34x4 + 0x5 + 82.0x6 6 0.8 · 100

0.25x1 + 0.98x2 + 0.45x3 + 0.35x4 + 0x5 + 82.5x6 6 0.8 · 100

x1 + x2 + x3 + x4 = 100

(18)

A solution of the task of minimising the objective
function (16) under constraints (18) is:











































































x1 = 38.73%

x2 = 0.0%

x3 = 59.28%

x4 = 0.50%

x5 = 1.14%

x6 = 0.35%

f0 = 240.06

(19)

The task of minimising function (17) with the sys-
tem of constraints (18) has the following solution:











































































x1 = 94.49%

x2 = 0.0%

x3 = 0.0%

x4 = 1.88%

x5 = 3.13%

x6 = 0.50%

f1 = 282.60

(20)

For plotting a compromise objective function result-
ing from the relationship (10), only the values of f0
from (19) and f1 from (20) are needed. The fractions
of individual charge components given in relationships
(19) and (20) are significantly different. This is important
inasmuch as in the case of solutions not differing much
from each other (only unit price changes), plotting of
compromise function makes no sense.

The definition of a compromise objective function
is as follows:

f = [240.06 − (2.60x1 + 2.40x2 + 2.20x3+

+5.00x4 + 4.20x5 + 4.70x6 ) ]2
+

+ [282.60 − (2.70x1 + 3.40x2 + 2.90x3+

+5.60x4 + 4.60x5 + 5.10x6 ) ]2
.

(21)

The task of charge burden calculation for fuzzy pa-
rameters of the charge materials (chemical composition
and unit price) consists in determination of the value
of vector x, which minimises the compromise objective
function (21) under constraints (18).

Having introduced the above data to a computer pro-
gram (computing the algorithm of square programming)
and having performed the respective computation proce-
dure, the results shown in Figure 2 are obtained.

Fig. 2. Output of charge burden calculations

The calculated charge burden is optimal for the
whole range of changes in unit prices of the individu-
al charge materials. Choosing this burden (according to
Figure 2) will be much “safer” than it would be if only
average unit prices of the individual charge components
were taken into consideration.
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6. Summary

The methods of charge burden calculation described
here, considerably extend our knowledge (foundry prob-
lems – in particular, but also science in general) about
optimising of production processes. Through model ap-
proach to the tasks coresponding to various situations oc-
curring in technological process, the operation of charge
burden calculation can be aided by computers and in-
cluded in the system of automatic control of devices
which prepare charge burden for foundry furnaces. In
integrated system of production planning and prepara-
tion, these methods may prove to be useful in searches
for a best strategy to manage the chain of supplies of
new charge materials.
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